Density of smooth compactly supported functions in Lp #
In this file, we prove that Lp functions can be approximated by smooth compactly supported
functions for p < ∞.
This result is recorded in MeasureTheory.MemLp.exist_sub_eLpNorm_le.
theorem
HasCompactSupport.exist_eLpNorm_sub_le_of_continuous
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace E]
[NormedAddCommGroup F]
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
[BorelSpace E]
[NormedSpace ℝ F]
(μ : MeasureTheory.Measure E := by volume_tac)
[MeasureTheory.IsFiniteMeasureOnCompacts μ]
{p : ENNReal}
(hp : p ≠ ⊤)
{ε : ℝ}
(hε : 0 < ε)
{f : E → F}
(h₁ : HasCompactSupport f)
(h₂ : Continuous f)
:
∃ (g : E → F), HasCompactSupport g ∧ ContDiff ℝ (↑⊤) g ∧ MeasureTheory.eLpNorm (f - g) p μ ≤ ENNReal.ofReal ε
For every continuous compactly supported function fthere exists a smooth compactly supported
function g such that f - g is arbitrary small in the Lp-norm for p < ∞.
theorem
MeasureTheory.MemLp.exist_eLpNorm_sub_le
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace E]
[NormedAddCommGroup F]
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
[BorelSpace E]
[NormedSpace ℝ F]
{μ : Measure E}
[IsFiniteMeasureOnCompacts μ]
{p : ENNReal}
(hp : p ≠ ⊤)
(hp₂ : 1 ≤ p)
{f : E → F}
(hf : MemLp f p μ)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (g : E → F), HasCompactSupport g ∧ ContDiff ℝ (↑⊤) g ∧ eLpNorm (f - g) p μ ≤ ENNReal.ofReal ε
Every Lp function can be approximated by a smooth compactly supported function provided that
p < ∞.
theorem
MeasureTheory.Lp.dense_hasCompactSupport_contDiff
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace E]
[NormedAddCommGroup F]
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
[BorelSpace E]
[NormedSpace ℝ F]
{μ : Measure E}
[IsFiniteMeasureOnCompacts μ]
{p : ENNReal}
(hp : p ≠ ⊤)
[hp₂ : Fact (1 ≤ p)]
: