Documentation

Mathlib.Analysis.Normed.Lp.SmoothApprox

Density of smooth compactly supported functions in Lp #

In this file, we prove that Lp functions can be approximated by smooth compactly supported functions for p < ∞.

This result is recorded in MeasureTheory.MemLp.exist_sub_eLpNorm_le.

For every continuous compactly supported function fthere exists a smooth compactly supported function g such that f - g is arbitrary small in the Lp-norm for p < ∞.

theorem MeasureTheory.MemLp.exist_eLpNorm_sub_le {E : Type u_3} {F : Type u_4} [MeasurableSpace E] [NormedAddCommGroup F] [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] [BorelSpace E] [NormedSpace F] {μ : Measure E} [IsFiniteMeasureOnCompacts μ] {p : ENNReal} (hp : p ) (hp₂ : 1 p) {f : EF} (hf : MemLp f p μ) {ε : } ( : 0 < ε) :
∃ (g : EF), HasCompactSupport g ContDiff (↑) g eLpNorm (f - g) p μ ENNReal.ofReal ε

Every Lp function can be approximated by a smooth compactly supported function provided that p < ∞.

theorem MeasureTheory.Lp.dense_hasCompactSupport_contDiff {E : Type u_3} {F : Type u_4} [MeasurableSpace E] [NormedAddCommGroup F] [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] [BorelSpace E] [NormedSpace F] {μ : Measure E} [IsFiniteMeasureOnCompacts μ] {p : ENNReal} (hp : p ) [hp₂ : Fact (1 p)] :
Dense {f : (Lp F p μ) | ∃ (g : EF), f =ᶠ[ae μ] g HasCompactSupport g ContDiff (↑) g}