The span of a single vector #
The equivalence of ๐
and ๐ โข x
for x โ 0
are defined as continuous linear equivalence and
isometry.
Main definitions #
ContinuousLinearEquiv.toSpanNonzeroSingleton
: The continuous linear equivalence between๐
and๐ โข x
forx โ 0
.LinearIsometryEquiv.toSpanUnitSingleton
: Forโxโ = 1
the continuous linear equivalence is a linear isometry equivalence.
theorem
LinearMap.toSpanSingleton_homothety
(๐ : Type u_1)
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
(x : E)
(c : ๐)
:
theorem
LinearEquiv.toSpanNonzeroSingleton_homothety
(๐ : Type u_1)
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
(x : E)
(h : x โ 0)
(c : ๐)
:
noncomputable def
ContinuousLinearEquiv.toSpanNonzeroSingleton
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(x : E)
(h : x โ 0)
:
๐ โL[๐] โฅ(Submodule.span ๐ {x})
Given a nonzero element x
of a normed space Eโ
over a field ๐
, the natural
continuous linear equivalence from Eโ
to the span of x
.
Equations
- ContinuousLinearEquiv.toSpanNonzeroSingleton ๐ x h = ContinuousLinearEquiv.ofHomothety (LinearEquiv.toSpanNonzeroSingleton ๐ E x h) โxโ โฏ โฏ
Instances For
noncomputable def
ContinuousLinearEquiv.coord
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(x : E)
(h : x โ 0)
:
โฅ(Submodule.span ๐ {x}) โL[๐] ๐
Given a nonzero element x
of a normed space Eโ
over a field ๐
, the natural continuous
linear map from the span of x
to ๐
.
Equations
- ContinuousLinearEquiv.coord ๐ x h = โ(ContinuousLinearEquiv.toSpanNonzeroSingleton ๐ x h).symm
Instances For
@[simp]
theorem
ContinuousLinearEquiv.coe_toSpanNonzeroSingleton_symm
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{x : E}
(h : x โ 0)
:
โ(toSpanNonzeroSingleton ๐ x h).symm = โ(coord ๐ x h)
@[simp]
theorem
ContinuousLinearEquiv.coord_toSpanNonzeroSingleton
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{x : E}
(h : x โ 0)
(c : ๐)
:
(coord ๐ x h) ((toSpanNonzeroSingleton ๐ x h) c) = c
@[simp]
theorem
ContinuousLinearEquiv.toSpanNonzeroSingleton_coord
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{x : E}
(h : x โ 0)
(y : โฅ(Submodule.span ๐ {x}))
:
(toSpanNonzeroSingleton ๐ x h) ((coord ๐ x h) y) = y
@[simp]
theorem
ContinuousLinearEquiv.coord_self
(๐ : Type u_1)
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
(x : E)
(h : x โ 0)
:
noncomputable def
LinearIsometryEquiv.toSpanUnitSingleton
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
(x : E)
(hx : โxโ = 1)
:
๐ โโแตข[๐] โฅ(Submodule.span ๐ {x})
Given a unit element x
of a normed space E
over a field ๐
, the natural
linear isometry equivalence from E
to the span of x
.
Equations
- LinearIsometryEquiv.toSpanUnitSingleton x hx = { toLinearEquiv := LinearEquiv.toSpanNonzeroSingleton ๐ E x โฏ, norm_map' := โฏ }
Instances For
@[simp]
theorem
LinearIsometryEquiv.toSpanUnitSingleton_apply
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
(x : E)
(hx : โxโ = 1)
(r : ๐)
:
(toSpanUnitSingleton x hx) r = โจr โข x, โฏโฉ