Documentation

Mathlib.Analysis.Normed.Order.Hom.Basic

Constructing (semi)normed groups from (semi)normed homs #

This file defines constructions that upgrade (Comm)Group to (Semi)Normed(Comm)Group using a Group(Semi)normClass when the codomain is the reals.

See Mathlib.Analysis.Normed.Order.Hom.Ultra for further upgrades to nonarchimedean normed groups.

@[reducible, inline]
abbrev GroupSeminormClass.toSeminormedGroup {F : Type u_1} {α : Type u_2} [FunLike F α ] [Group α] [GroupSeminormClass F α ] (f : F) :

Constructs a SeminormedGroup structure from a GroupSeminormClass on a Group.

Equations
Instances For
    @[reducible, inline]

    Constructs a SeminormedAddGroup structure from an AddGroupSeminormClass on an AddGroup.

    Equations
    Instances For
      theorem GroupSeminormClass.toSeminormedGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [Group α] [GroupSeminormClass F α ] (f : F) (x : α) :
      x = f x
      theorem AddGroupSeminormClass.toSeminormedAddGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [AddGroup α] [AddGroupSeminormClass F α ] (f : F) (x : α) :
      x = f x
      @[reducible, inline]

      Constructs a SeminormedCommGroup structure from a GroupSeminormClass on a CommGroup.

      Equations
      Instances For
        theorem GroupSeminormClass.toSeminormedCommGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [CommGroup α] [GroupSeminormClass F α ] (f : F) (x : α) :
        x = f x
        @[reducible, inline]
        abbrev GroupNormClass.toNormedGroup {F : Type u_1} {α : Type u_2} [FunLike F α ] [Group α] [GroupNormClass F α ] (f : F) :

        Constructs a NormedGroup structure from a GroupNormClass on a Group.

        Equations
        Instances For
          @[reducible, inline]
          abbrev AddGroupNormClass.toNormedAddGroup {F : Type u_1} {α : Type u_2} [FunLike F α ] [AddGroup α] [AddGroupNormClass F α ] (f : F) :

          Constructs a NormedAddGroup structure from an AddGroupNormClass on an AddGroup.

          Equations
          Instances For
            theorem GroupNormClass.toNormedGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [Group α] [GroupNormClass F α ] (f : F) (x : α) :
            x = f x
            theorem AddGroupNormClass.toNormedAddGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [AddGroup α] [AddGroupNormClass F α ] (f : F) (x : α) :
            x = f x
            @[reducible, inline]
            abbrev GroupNormClass.toNormedCommGroup {F : Type u_1} {α : Type u_2} [FunLike F α ] [CommGroup α] [GroupNormClass F α ] (f : F) :

            Constructs a NormedCommGroup structure from a GroupNormClass on a CommGroup.

            Equations
            Instances For
              @[reducible, inline]

              Constructs a NormedAddCommGroup structure from an AddGroupNormClass on an AddCommGroup.

              Equations
              Instances For
                theorem GroupNormClass.toNormedCommGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [CommGroup α] [GroupNormClass F α ] (f : F) (x : α) :
                x = f x
                theorem AddGroupNormClass.toNormedAddCommGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [AddCommGroup α] [AddGroupNormClass F α ] (f : F) (x : α) :
                x = f x