Documentation

Mathlib.Analysis.NormedSpace.Alternating.Curry

Currying continuous alternating forms #

In this file we define ContinuousAlternatingMap.curryLeft which interprets a continuous alternating map in n + 1 variables as a continuous linear map in the 0th variable taking values in the continuous alternating maps in n variables.

noncomputable def ContinuousAlternatingMap.curryLeft {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (f : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) :
E โ†’L[๐•œ] E [โ‹€^Fin n]โ†’L[๐•œ] F

Given a continuous alternating map f in n+1 variables, split the first variable to obtain a continuous linear map into continuous alternating maps in n variables, given by x โ†ฆ (m โ†ฆ f (Matrix.vecCons x m)). It can be thought of as a map $Hom(\bigwedge^{n+1} M, N) \to Hom(M, Hom(\bigwedge^n M, N))$.

This is ContinuousMultilinearMap.curryLeft for AlternatingMap. See also ContinuousAlternatingMap.curryLeftLI.

Equations
Instances For
    @[simp]
    theorem ContinuousAlternatingMap.toContinuousMultilinearMap_curryLeft {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (f : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) (x : E) :
    @[simp]
    theorem ContinuousAlternatingMap.toAlternatingMap_curryLeft {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (f : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) (x : E) :
    @[simp]
    theorem ContinuousAlternatingMap.norm_curryLeft {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (f : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) :
    @[simp]
    theorem ContinuousAlternatingMap.curryLeft_apply_apply {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (f : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) (x : E) (v : Fin n โ†’ E) :
    (f.curryLeft x) v = f (Matrix.vecCons x v)
    @[simp]
    theorem ContinuousAlternatingMap.curryLeft_zero {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} :
    @[simp]
    theorem ContinuousAlternatingMap.curryLeft_add {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (f g : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) :
    @[simp]
    theorem ContinuousAlternatingMap.curryLeft_smul {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (r : ๐•œ) (f : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) :
    noncomputable def ContinuousAlternatingMap.curryLeftLI {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} :
    E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F โ†’โ‚—แตข[๐•œ] E โ†’L[๐•œ] E [โ‹€^Fin n]โ†’L[๐•œ] F

    ContinuousAlternatingMap.curryLeft as a LinearIsometry.

    Equations
    Instances For
      @[simp]
      theorem ContinuousAlternatingMap.curryLeftLI_apply {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (f : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) :
      @[simp]
      theorem ContinuousAlternatingMap.curryLeft_same {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {n : โ„•} (f : E [โ‹€^Fin (n + 2)]โ†’L[๐•œ] F) (x : E) :

      Currying with the same element twice gives the zero map.

      @[simp]
      theorem ContinuousAlternatingMap.curryLeft_compContinuousAlternatingMap {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [NormedAddCommGroup G] [NormedSpace ๐•œ G] {n : โ„•} (g : F โ†’L[๐•œ] G) (f : E [โ‹€^Fin (n + 1)]โ†’L[๐•œ] F) (x : E) :
      @[simp]
      theorem ContinuousAlternatingMap.curryLeft_compContinuousLinearMap {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [NormedAddCommGroup G] [NormedSpace ๐•œ G] {n : โ„•} (g : F [โ‹€^Fin (n + 1)]โ†’L[๐•œ] G) (f : E โ†’L[๐•œ] F) (x : E) :