Cauchy's bound on polynomial roots. #
The bound is given by Polynomial.cauchyBound
, which for a_n x^n + a_(n-1) x^(n - 1) + ⋯ + a_0
is
is 1 + max_(0 ≤ i < n) a_i / a_n
.
The theorem that this gives a bound to polynomial roots is Polynomial.IsRoot.norm_lt_cauchyBound
.
Cauchy's bound on the roots of a given polynomial.
See IsRoot.norm_lt_cauchyBound
for the proof that the roots satisfy this bound.
Equations
Instances For
@[simp]
theorem
Polynomial.one_le_cauchyBound
{K : Type u_1}
[NormedDivisionRing K]
(p : Polynomial K)
:
1 ≤ p.cauchyBound
@[simp]
@[simp]
theorem
Polynomial.cauchyBound_C
{K : Type u_1}
[NormedDivisionRing K]
(x : K)
:
(Polynomial.C x).cauchyBound = 1
@[simp]
@[simp]
theorem
Polynomial.cauchyBound_X
{K : Type u_1}
[NormedDivisionRing K]
:
Polynomial.X.cauchyBound = 1
@[simp]
@[simp]
@[simp]
theorem
Polynomial.cauchyBound_smul
{K : Type u_1}
[NormedDivisionRing K]
{x : K}
(hx : x ≠ 0)
(p : Polynomial K)
:
theorem
Polynomial.IsRoot.norm_lt_cauchyBound
{K : Type u_1}
[NormedDivisionRing K]
{p : Polynomial K}
(hp : p ≠ 0)
{a : K}
(h : p.IsRoot a)
:
cauchyBound
is a bound on the norm of polynomial roots.