theorem
Polynomial.ofReal_eval
{K : Type u_1}
[RCLike K]
(p : Polynomial ℝ)
(x : ℝ)
:
↑(Polynomial.eval x p) = (Polynomial.aeval ↑x) p
An RCLike
field is finite-dimensional over ℝ
, since it is spanned by {1, I}
.
theorem
FiniteDimensional.proper_rclike
(K : Type u_1)
(E : Type u_2)
[RCLike K]
[NormedAddCommGroup E]
[NormedSpace K E]
[FiniteDimensional K E]
:
A finite dimensional vector space over an RCLike
is a proper metric space.
This is not an instance because it would cause a search for FiniteDimensional ?x E
before
RCLike ?x
.
instance
FiniteDimensional.RCLike.properSpace_submodule
(K : Type u_1)
{E : Type u_2}
[RCLike K]
[NormedAddCommGroup E]
[NormedSpace K E]
(S : Submodule K E)
[FiniteDimensional K ↥S]
:
ProperSpace ↥S
theorem
Polynomial.aeval_conj
{K : Type u_1}
[RCLike K]
(p : Polynomial ℝ)
(z : K)
:
(Polynomial.aeval ((starRingEnd K) z)) p = (starRingEnd K) ((Polynomial.aeval z) p)
theorem
Polynomial.aeval_ofReal
{K : Type u_1}
[RCLike K]
(p : Polynomial ℝ)
(x : ℝ)
:
(Polynomial.aeval ↑x) p = ↑(Polynomial.eval x p)