Definition of mulExpNegMulSq
and properties #
mulExpNegMulSq
is the mapping fun (ε : ℝ) (x : ℝ) => x * Real.exp (- (ε * x * x))
. By
composition, it can be used to transform a function g : E → ℝ
into a bounded function
mulExpNegMulSq ε ∘ g : E → ℝ = fun x => g x * Real.exp (-ε * g x * g x)
with useful
boundedness and convergence properties.
Main Properties #
abs_mulExpNegMulSq_le
: For fixedε > 0
, the mappingx ↦ mulExpNegMulSq ε x
is bounded byReal.sqrt ε⁻¹
;tendsto_mulExpNegMulSq
: For fixedx : ℝ
, the mappingmulExpNegMulSq ε x
converges pointwise tox
asε → 0
;lipschitzWith_one_mulExpNegMulSq
: For fixedε > 0
, the mappingmulExpNegMulSq ε
is Lipschitz with constant1
;abs_mulExpNegMulSq_comp_le_norm
: For a fixed bounded continuous functiong
, the mappingmulExpNegMulSq ε ∘ g
is bounded bynorm g
, uniformly inε ≥ 0
;
theorem
Continuous.mulExpNegMulSq
{ε : ℝ}
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℝ}
(hf : Continuous f)
:
Continuous fun (x : α) => ε.mulExpNegMulSq (f x)
For fixed ε > 0
, the mapping mulExpNegMulSq ε
is Lipschitz with constant 1
For fixed ε > 0
, the mapping x ↦ mulExpNegMulSq ε x
is bounded by `Real.sqrt ε⁻¹
theorem
Real.tendsto_mulExpNegMulSq
{x : ℝ}
:
Filter.Tendsto (fun (ε : ℝ) => ε.mulExpNegMulSq x) (nhds 0) (nhds x)
For fixed x : ℝ
, the mapping mulExpNegMulSq ε x
converges pointwise to x
as ε → 0
theorem
Real.abs_mulExpNegMulSq_comp_le_norm
{ε : ℝ}
{E : Type u_1}
[TopologicalSpace E]
{x : E}
(g : BoundedContinuousFunction E ℝ)
(hε : 0 ≤ ε)
:
For a fixed bounded function g
, mulExpNegMulSq ε ∘ g
is bounded by norm g
,
uniformly in ε ≥ 0
.