Documentation

Mathlib.Analysis.SpecialFunctions.MulExpNegMulSq

Definition of mulExpNegMulSq and properties #

mulExpNegMulSq is the mapping fun (ε : ℝ) (x : ℝ) => x * Real.exp (- (ε * x * x)). By composition, it can be used to transform a function g : E → ℝ into a bounded function mulExpNegMulSq ε ∘ g : E → ℝ = fun x => g x * Real.exp (-ε * g x * g x) with useful boundedness and convergence properties.

Main Properties #

Definition and properties of fun x => x * Real.exp (- (ε * x * x)) #

noncomputable def Real.mulExpNegMulSq (ε x : ) :

Mapping fun ε x => x * Real.exp (- (ε * x * x)). By composition, it can be used to transform functions into bounded functions.

Equations
Instances For
    theorem Real.mulExpNegSq_apply (ε x : ) :
    ε.mulExpNegMulSq x = x * exp (-(ε * x * x))
    theorem Continuous.mulExpNegMulSq {ε : } {α : Type u_1} [TopologicalSpace α] {f : α} (hf : Continuous f) :
    Continuous fun (x : α) => ε.mulExpNegMulSq (f x)
    theorem Real.hasDerivAt_mulExpNegMulSq {ε : } (y : ) :
    HasDerivAt ε.mulExpNegMulSq (exp (-(ε * y * y)) + y * (exp (-(ε * y * y)) * (-2 * ε * y))) y
    theorem Real.deriv_mulExpNegMulSq {ε : } (y : ) :
    deriv ε.mulExpNegMulSq y = exp (-(ε * y * y)) + y * (exp (-(ε * y * y)) * (-2 * ε * y))

    For fixed ε > 0, the mapping mulExpNegMulSq ε is Lipschitz with constant 1

    theorem Real.abs_mulExpNegMulSq_le {ε : } (hε : 0 < ε) {x : } :

    For fixed ε > 0, the mapping x ↦ mulExpNegMulSq ε x is bounded by `Real.sqrt ε⁻¹

    theorem Real.dist_mulExpNegMulSq_le_two_mul_sqrt {ε : } (hε : 0 < ε) (x y : ) :
    theorem Real.dist_mulExpNegMulSq_le_dist {ε : } (hε : 0 < ε) {x y : } :
    theorem Real.tendsto_mulExpNegMulSq {x : } :
    Filter.Tendsto (fun (ε : ) => ε.mulExpNegMulSq x) (nhds 0) (nhds x)

    For fixed x : ℝ, the mapping mulExpNegMulSq ε x converges pointwise to x as ε → 0

    theorem Real.abs_mulExpNegMulSq_comp_le_norm {ε : } {E : Type u_1} [TopologicalSpace E] {x : E} (g : BoundedContinuousFunction E ) (hε : 0 ε) :

    For a fixed bounded function g, mulExpNegMulSq ε ∘ g is bounded by norm g, uniformly in ε ≥ 0.