Documentation

Mathlib.Analysis.SpecialFunctions.OrdinaryHypergeometric

Ordinary hypergeometric function in a Banach algebra #

In this file, we define ordinaryHypergeometric, the ordinary or Gaussian hypergeometric function in a topological algebra 𝔸 over a field 𝕂 given by: $$ _2\mathrm{F}_1(a\ b\ c : \mathbb{K}, x : \mathbb{A}) = \sum_{n=0}^{\infty}\frac{(a)_n(b)_n}{(c)_n} \frac{x^n}{n!} \,, $$ with $(a)_n$ is the ascending Pochhammer symbol (see ascPochhammer).

This file contains the basic definitions over a general field 𝕂 and notation for ₂F₁, as well as showing that terms of the series are zero if any of the (a b c : 𝕂) are sufficiently large non-positive integers, rendering the series finite. In this file "sufficiently large" means that -n < a for the n-th term, and similarly for b and c.

[RCLike 𝕂] #

If we have [RCLike 𝕂], then we show that the latter result is an iff, and hence prove that the radius of convergence of the series is unity if the series is infinite, or otherwise.

Notation #

₂F₁ is notation for ordinaryHypergeometric.

References #

See https://en.wikipedia.org/wiki/Hypergeometric_function.

Tags #

hypergeometric, gaussian, ordinary

@[reducible, inline]
noncomputable abbrev ordinaryHypergeometricCoefficient {𝕂 : Type u_1} [Field 𝕂] (a b c : 𝕂) (n : ) :
𝕂

The coefficients in the ordinary hypergeometric sum.

Equations
Instances For
    noncomputable def ordinaryHypergeometricSeries {𝕂 : Type u_1} (𝔸 : Type u_2) [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) :

    ordinaryHypergeometricSeries 𝔸 (a b c : 𝕂) is a FormalMultilinearSeries. Its sum is the ordinaryHypergeometric map.

    Equations
    Instances For
      noncomputable def ordinaryHypergeometric {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) (x : 𝔸) :
      𝔸

      ordinaryHypergeometric (a b c : 𝕂) : 𝔸 → 𝔸 is the ordinary hypergeometric map, defined as the sum of the FormalMultilinearSeries ordinaryHypergeometricSeries 𝔸 a b c.

      Note that this takes the junk value 0 outside the radius of convergence.

      Equations
      Instances For

        ordinaryHypergeometric (a b c : 𝕂) : 𝔸 → 𝔸 is the ordinary hypergeometric map, defined as the sum of the FormalMultilinearSeries ordinaryHypergeometricSeries 𝔸 a b c.

        Note that this takes the junk value 0 outside the radius of convergence.

        Equations
        Instances For
          theorem ordinaryHypergeometricSeries_apply_eq {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) (x : 𝔸) (n : ) :
          ((ordinaryHypergeometricSeries 𝔸 a b c n) fun (x_1 : Fin n) => x) = ((↑n.factorial)⁻¹ * Polynomial.eval a (ascPochhammer 𝕂 n) * Polynomial.eval b (ascPochhammer 𝕂 n) * (Polynomial.eval c (ascPochhammer 𝕂 n))⁻¹) x ^ n
          theorem ordinaryHypergeometricSeries_apply_eq' {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) (x : 𝔸) :
          (fun (n : ) => (ordinaryHypergeometricSeries 𝔸 a b c n) fun (x_1 : Fin n) => x) = fun (n : ) => ((↑n.factorial)⁻¹ * Polynomial.eval a (ascPochhammer 𝕂 n) * Polynomial.eval b (ascPochhammer 𝕂 n) * (Polynomial.eval c (ascPochhammer 𝕂 n))⁻¹) x ^ n

          This naming follows the convention of NormedSpace.expSeries_apply_eq'.

          theorem ordinaryHypergeometric_sum_eq {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) (x : 𝔸) :
          (ordinaryHypergeometricSeries 𝔸 a b c).sum x = ∑' (n : ), ((↑n.factorial)⁻¹ * Polynomial.eval a (ascPochhammer 𝕂 n) * Polynomial.eval b (ascPochhammer 𝕂 n) * (Polynomial.eval c (ascPochhammer 𝕂 n))⁻¹) x ^ n
          theorem ordinaryHypergeometric_eq_tsum {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) :
          ₂F₁ a b c = fun (x : 𝔸) => ∑' (n : ), ((↑n.factorial)⁻¹ * Polynomial.eval a (ascPochhammer 𝕂 n) * Polynomial.eval b (ascPochhammer 𝕂 n) * (Polynomial.eval c (ascPochhammer 𝕂 n))⁻¹) x ^ n
          theorem ordinaryHypergeometricSeries_apply_zero {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) (n : ) :
          ((ordinaryHypergeometricSeries 𝔸 a b c n) fun (x : Fin n) => 0) = Pi.single 0 1 n
          @[simp]
          theorem ordinaryHypergeometric_zero {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) :
          ₂F₁ a b c 0 = 1
          theorem ordinaryHypergeometricSeries_symm {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) :
          theorem ordinaryHypergeometricSeries_eq_zero_of_neg_nat {𝕂 : Type u_1} {𝔸 : Type u_2} [Field 𝕂] [Ring 𝔸] [Algebra 𝕂 𝔸] [TopologicalSpace 𝔸] [TopologicalRing 𝔸] (a b c : 𝕂) {n k : } (habc : k = -a k = -b k = -c) (hk : k < n) :

          If any parameter to the series is a sufficiently large nonpositive integer, then the series term is zero.

          theorem ordinaryHypergeometric_radius_top_of_neg_nat₁ {𝕂 : Type u_1} (𝔸 : Type u_2) [RCLike 𝕂] [NormedDivisionRing 𝔸] [NormedAlgebra 𝕂 𝔸] (b c : 𝕂) {k : } :
          (ordinaryHypergeometricSeries 𝔸 (-k) b c).radius =
          theorem ordinaryHypergeometric_radius_top_of_neg_nat₂ {𝕂 : Type u_1} (𝔸 : Type u_2) [RCLike 𝕂] [NormedDivisionRing 𝔸] [NormedAlgebra 𝕂 𝔸] (a c : 𝕂) {k : } :
          (ordinaryHypergeometricSeries 𝔸 a (-k) c).radius =
          theorem ordinaryHypergeometric_radius_top_of_neg_nat₃ {𝕂 : Type u_1} (𝔸 : Type u_2) [RCLike 𝕂] [NormedDivisionRing 𝔸] [NormedAlgebra 𝕂 𝔸] (a b : 𝕂) {k : } :
          (ordinaryHypergeometricSeries 𝔸 a b (-k)).radius =
          theorem ordinaryHypergeometricSeries_eq_zero_iff {𝕂 : Type u_1} (𝔸 : Type u_2) [RCLike 𝕂] [NormedDivisionRing 𝔸] [NormedAlgebra 𝕂 𝔸] (a b c : 𝕂) (n : ) :
          ordinaryHypergeometricSeries 𝔸 a b c n = 0 k < n, k = -a k = -b k = -c

          An iff variation on ordinaryHypergeometricSeries_eq_zero_of_nonpos_int for [RCLike 𝕂].

          theorem ordinaryHypergeometricSeries_norm_div_succ_norm {𝕂 : Type u_1} [RCLike 𝕂] (a b c : 𝕂) (n : ) (habc : kn < n, kn -a kn -b kn -c) :
          theorem ordinaryHypergeometricSeries_radius_eq_one {𝕂 : Type u_1} (𝔸 : Type u_2) [RCLike 𝕂] [NormedDivisionRing 𝔸] [NormedAlgebra 𝕂 𝔸] (a b c : 𝕂) (habc : ∀ (kn : ), kn -a kn -b kn -c) :
          (ordinaryHypergeometricSeries 𝔸 a b c).radius = 1

          The radius of convergence of ordinaryHypergeometricSeries is unity if none of the parameters are non-positive integers.