Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev

Multiple angle formulas in terms of Chebyshev polynomials #

This file gives the trigonometric characterizations of Chebyshev polynomials, for the real (Real.cos) and complex (Complex.cos) cosine and the real (Real.cosh) and complex (Complex.cosh) hyperbolic cosine.

@[simp]
theorem Polynomial.Chebyshev.complex_ofReal_eval_T (x : ) (n : ) :
(eval x (T n)) = eval (↑x) (T n)
@[simp]
theorem Polynomial.Chebyshev.complex_ofReal_eval_U (x : ) (n : ) :
(eval x (U n)) = eval (↑x) (U n)
@[simp]
theorem Polynomial.Chebyshev.complex_ofReal_eval_C (x : ) (n : ) :
(eval x (C n)) = eval (↑x) (C n)
@[simp]
theorem Polynomial.Chebyshev.complex_ofReal_eval_S (x : ) (n : ) :
(eval x (S n)) = eval (↑x) (S n)

Complex versions #

@[simp]
theorem Polynomial.Chebyshev.T_complex_cos (θ : ) (n : ) :
eval (Complex.cos θ) (T n) = Complex.cos (n * θ)

The n-th Chebyshev polynomial of the first kind evaluates on cos θ to the value cos (n * θ).

@[simp]
theorem Polynomial.Chebyshev.U_complex_cos (θ : ) (n : ) :
eval (Complex.cos θ) (U n) * Complex.sin θ = Complex.sin ((n + 1) * θ)

The n-th Chebyshev polynomial of the second kind evaluates on cos θ to the value sin ((n + 1) * θ) / sin θ.

@[simp]
theorem Polynomial.Chebyshev.C_two_mul_complex_cos (θ : ) (n : ) :
eval (2 * Complex.cos θ) (C n) = 2 * Complex.cos (n * θ)

The n-th rescaled Chebyshev polynomial of the first kind (Vieta–Lucas polynomial) evaluates on 2 * cos θ to the value 2 * cos (n * θ).

@[simp]
theorem Polynomial.Chebyshev.S_two_mul_complex_cos (θ : ) (n : ) :
eval (2 * Complex.cos θ) (S n) * Complex.sin θ = Complex.sin ((n + 1) * θ)

The n-th rescaled Chebyshev polynomial of the second kind (Vieta–Fibonacci polynomial) evaluates on 2 * cos θ to the value sin ((n + 1) * θ) / sin θ.

@[simp]
theorem Polynomial.Chebyshev.T_complex_cosh (θ : ) (n : ) :
eval (Complex.cosh θ) (T n) = Complex.cosh (n * θ)

The n-th Chebyshev polynomial of the first kind evaluates on cosh θ to the value cosh (n * θ).

@[simp]
theorem Polynomial.Chebyshev.U_complex_cosh (θ : ) (n : ) :
eval (Complex.cosh θ) (U n) * Complex.sinh θ = Complex.sinh ((n + 1) * θ)

The n-th Chebyshev polynomial of the second kind evaluates on cosh θ to the value sinh ((n + 1) * θ) / sinh θ.

@[simp]

The n-th rescaled Chebyshev polynomial of the first kind (Vieta–Lucas polynomial) evaluates on 2 * cosh θ to the value 2 * cosh (n * θ).

@[simp]

The n-th rescaled Chebyshev polynomial of the second kind (Vieta–Fibonacci polynomial) evaluates on 2 * cosh θ to the value sinh ((n + 1) * θ) / sinh θ.

Real versions #

@[simp]
theorem Polynomial.Chebyshev.T_real_cos (θ : ) (n : ) :
eval (Real.cos θ) (T n) = Real.cos (n * θ)

The n-th Chebyshev polynomial of the first kind evaluates on cos θ to the value cos (n * θ).

@[simp]
theorem Polynomial.Chebyshev.U_real_cos (θ : ) (n : ) :
eval (Real.cos θ) (U n) * Real.sin θ = Real.sin ((n + 1) * θ)

The n-th Chebyshev polynomial of the second kind evaluates on cos θ to the value sin ((n + 1) * θ) / sin θ.

@[simp]
theorem Polynomial.Chebyshev.C_two_mul_real_cos (θ : ) (n : ) :
eval (2 * Real.cos θ) (C n) = 2 * Real.cos (n * θ)

The n-th rescaled Chebyshev polynomial of the first kind (Vieta–Lucas polynomial) evaluates on 2 * cos θ to the value 2 * cos (n * θ).

@[simp]
theorem Polynomial.Chebyshev.S_two_mul_real_cos (θ : ) (n : ) :
eval (2 * Real.cos θ) (S n) * Real.sin θ = Real.sin ((n + 1) * θ)

The n-th rescaled Chebyshev polynomial of the second kind (Vieta–Fibonacci polynomial) evaluates on 2 * cos θ to the value sin ((n + 1) * θ) / sin θ.

@[simp]
theorem Polynomial.Chebyshev.T_real_cosh (θ : ) (n : ) :
eval (Real.cosh θ) (T n) = Real.cosh (n * θ)

The n-th Chebyshev polynomial of the first kind evaluates on cosh θ to the value cosh (n * θ).

@[simp]
theorem Polynomial.Chebyshev.U_real_cosh (θ : ) (n : ) :
eval (Real.cosh θ) (U n) * Real.sinh θ = Real.sinh ((n + 1) * θ)

The n-th Chebyshev polynomial of the second kind evaluates on cosh θ to the value sinh ((n + 1) * θ) / sinh θ.

@[simp]
theorem Polynomial.Chebyshev.C_two_mul_real_cosh (θ : ) (n : ) :
eval (2 * Real.cosh θ) (C n) = 2 * Real.cosh (n * θ)

The n-th rescaled Chebyshev polynomial of the first kind (Vieta–Lucas polynomial) evaluates on 2 * cosh θ to the value 2 * cosh (n * θ).

@[simp]
theorem Polynomial.Chebyshev.S_two_mul_real_cosh (θ : ) (n : ) :
eval (2 * Real.cosh θ) (S n) * Real.sinh θ = Real.sinh ((n + 1) * θ)

The n-th rescaled Chebyshev polynomial of the second kind (Vieta–Fibonacci polynomial) evaluates on 2 * cosh θ to the value sinh ((n + 1) * θ) / sinh θ.