Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev

Multiple angle formulas in terms of Chebyshev polynomials #

This file gives the trigonometric characterizations of Chebyshev polynomials, for both the real (Real.cos) and complex (Complex.cos) cosine.

Complex versions #

@[simp]

The n-th Chebyshev polynomial of the first kind evaluates on cos θ to the value cos (n * θ).

@[simp]

The n-th Chebyshev polynomial of the second kind evaluates on cos θ to the value sin ((n + 1) * θ) / sin θ.

@[simp]

The n-th rescaled Chebyshev polynomial of the first kind (Vieta–Lucas polynomial) evaluates on 2 * cos θ to the value 2 * cos (n * θ).

@[simp]

The n-th rescaled Chebyshev polynomial of the second kind (Vieta–Fibonacci polynomial) evaluates on 2 * cos θ to the value sin ((n + 1) * θ) / sin θ.

Real versions #

@[simp]

The n-th Chebyshev polynomial of the first kind evaluates on cos θ to the value cos (n * θ).

@[simp]

The n-th Chebyshev polynomial of the second kind evaluates on cos θ to the value sin ((n + 1) * θ) / sin θ.

@[simp]

The n-th rescaled Chebyshev polynomial of the first kind (Vieta–Lucas polynomial) evaluates on 2 * cos θ to the value 2 * cos (n * θ).

@[simp]

The n-th rescaled Chebyshev polynomial of the second kind (Vieta–Fibonacci polynomial) evaluates on 2 * cos θ to the value sin ((n + 1) * θ) / sin θ.