Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Series

Trigonometric functions as sums of infinite series #

In this file we express trigonometric functions in terms of their series expansion.

Main results #

cos and sin for and #

theorem Complex.hasSum_cos' (z : ) :
HasSum (fun (n : ) => (z * I) ^ (2 * n) / (2 * n).factorial) (cos z)
theorem Complex.hasSum_sin' (z : ) :
HasSum (fun (n : ) => (z * I) ^ (2 * n + 1) / (2 * n + 1).factorial / I) (sin z)
theorem Complex.hasSum_cos (z : ) :
HasSum (fun (n : ) => (-1) ^ n * z ^ (2 * n) / (2 * n).factorial) (cos z)

The power series expansion of Complex.cos.

theorem Complex.hasSum_sin (z : ) :
HasSum (fun (n : ) => (-1) ^ n * z ^ (2 * n + 1) / (2 * n + 1).factorial) (sin z)

The power series expansion of Complex.sin.

theorem Complex.cos_eq_tsum' (z : ) :
cos z = ∑' (n : ), (z * I) ^ (2 * n) / (2 * n).factorial
theorem Complex.sin_eq_tsum' (z : ) :
sin z = ∑' (n : ), (z * I) ^ (2 * n + 1) / (2 * n + 1).factorial / I
theorem Complex.cos_eq_tsum (z : ) :
cos z = ∑' (n : ), (-1) ^ n * z ^ (2 * n) / (2 * n).factorial
theorem Complex.sin_eq_tsum (z : ) :
sin z = ∑' (n : ), (-1) ^ n * z ^ (2 * n + 1) / (2 * n + 1).factorial
theorem Real.hasSum_cos (r : ) :
HasSum (fun (n : ) => (-1) ^ n * r ^ (2 * n) / (2 * n).factorial) (cos r)

The power series expansion of Real.cos.

theorem Real.hasSum_sin (r : ) :
HasSum (fun (n : ) => (-1) ^ n * r ^ (2 * n + 1) / (2 * n + 1).factorial) (sin r)

The power series expansion of Real.sin.

theorem Real.cos_eq_tsum (r : ) :
cos r = ∑' (n : ), (-1) ^ n * r ^ (2 * n) / (2 * n).factorial
theorem Real.sin_eq_tsum (r : ) :
sin r = ∑' (n : ), (-1) ^ n * r ^ (2 * n + 1) / (2 * n + 1).factorial

cosh and sinh for and #

theorem Complex.hasSum_cosh (z : ) :
HasSum (fun (n : ) => z ^ (2 * n) / (2 * n).factorial) (cosh z)

The power series expansion of Complex.cosh.

theorem Complex.hasSum_sinh (z : ) :
HasSum (fun (n : ) => z ^ (2 * n + 1) / (2 * n + 1).factorial) (sinh z)

The power series expansion of Complex.sinh.

theorem Complex.cosh_eq_tsum (z : ) :
cosh z = ∑' (n : ), z ^ (2 * n) / (2 * n).factorial
theorem Complex.sinh_eq_tsum (z : ) :
sinh z = ∑' (n : ), z ^ (2 * n + 1) / (2 * n + 1).factorial
theorem Real.hasSum_cosh (r : ) :
HasSum (fun (n : ) => r ^ (2 * n) / (2 * n).factorial) (cosh r)

The power series expansion of Real.cosh.

theorem Real.hasSum_sinh (r : ) :
HasSum (fun (n : ) => r ^ (2 * n + 1) / (2 * n + 1).factorial) (sinh r)

The power series expansion of Real.sinh.

theorem Real.cosh_eq_tsum (r : ) :
cosh r = ∑' (n : ), r ^ (2 * n) / (2 * n).factorial
theorem Real.sinh_eq_tsum (r : ) :
sinh r = ∑' (n : ), r ^ (2 * n + 1) / (2 * n + 1).factorial
theorem Real.cosh_le_exp_half_sq (x : ) :
cosh x exp (x ^ 2 / 2)