Documentation

Mathlib.CategoryTheory.Adjunction.Opposites

Opposite adjunctions #

This file contains constructions to relate adjunctions of functors to adjunctions of their opposites.

Tags #

adjunction, opposite, uniqueness

If G is adjoint to F then F.unop is adjoint to G.unop.

Equations
Instances For
    @[deprecated CategoryTheory.Adjunction.unop (since := "2025-01-01")]

    Alias of CategoryTheory.Adjunction.unop.


    If G is adjoint to F then F.unop is adjoint to G.unop.

    Equations
    Instances For
      @[deprecated CategoryTheory.Adjunction.unop (since := "2025-01-01")]

      Alias of CategoryTheory.Adjunction.unop.


      If G is adjoint to F then F.unop is adjoint to G.unop.

      Equations
      Instances For
        @[deprecated CategoryTheory.Adjunction.unop (since := "2025-01-01")]

        Alias of CategoryTheory.Adjunction.unop.


        If G is adjoint to F then F.unop is adjoint to G.unop.

        Equations
        Instances For
          @[deprecated CategoryTheory.Adjunction.unop (since := "2025-01-01")]

          Alias of CategoryTheory.Adjunction.unop.


          If G is adjoint to F then F.unop is adjoint to G.unop.

          Equations
          Instances For
            def CategoryTheory.Adjunction.op {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (h : G F) :
            F.op G.op

            If G is adjoint to F then F.op is adjoint to G.op.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Adjunction.op_counit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (h : G F) :
              @[simp]
              theorem CategoryTheory.Adjunction.op_unit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (h : G F) :
              @[deprecated CategoryTheory.Adjunction.op (since := "2025-01-01")]

              Alias of CategoryTheory.Adjunction.op.


              If G is adjoint to F then F.op is adjoint to G.op.

              Equations
              Instances For
                @[deprecated CategoryTheory.Adjunction.op (since := "2025-01-01")]

                Alias of CategoryTheory.Adjunction.op.


                If G is adjoint to F then F.op is adjoint to G.op.

                Equations
                Instances For
                  @[deprecated CategoryTheory.Adjunction.op (since := "2025-01-01")]

                  Alias of CategoryTheory.Adjunction.op.


                  If G is adjoint to F then F.op is adjoint to G.op.

                  Equations
                  Instances For
                    @[deprecated CategoryTheory.Adjunction.op (since := "2025-01-01")]

                    Alias of CategoryTheory.Adjunction.op.


                    If G is adjoint to F then F.op is adjoint to G.op.

                    Equations
                    Instances For

                      If F is adjoint to G.leftOp then G is adjoint to F.leftOp.

                      Equations
                      Instances For

                        If F.rightOp is adjoint to G then G.rightOp is adjoint to F.

                        Equations
                        Instances For
                          def CategoryTheory.Adjunction.leftAdjointsCoyonedaEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} {G : Functor D C} (adj1 : F G) (adj2 : F' G) :

                          If F and F' are both adjoint to G, there is a natural isomorphism F.op ⋙ coyoneda ≅ F'.op ⋙ coyoneda. We use this in combination with fullyFaithfulCancelRight to show left adjoints are unique.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            def CategoryTheory.Adjunction.natIsoOfRightAdjointNatIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} {G G' : Functor D C} (adj1 : F G) (adj2 : F' G') (r : G G') :
                            F F'

                            Given two adjunctions, if the right adjoints are naturally isomorphic, then so are the left adjoints.

                            Note: it is generally better to use Adjunction.natIsoEquiv, see the file Adjunction.Unique. The reason this definition still exists is that apparently CategoryTheory.extendAlongYonedaYoneda uses its definitional properties (TODO: figure out a way to avoid this).

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              def CategoryTheory.Adjunction.natIsoOfLeftAdjointNatIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} {G G' : Functor D C} (adj1 : F G) (adj2 : F' G') (l : F F') :
                              G G'

                              Given two adjunctions, if the left adjoints are naturally isomorphic, then so are the right adjoints.

                              Note: it is generally better to use Adjunction.natIsoEquiv, see the file Adjunction.Unique.

                              Equations
                              Instances For