Documentation

Mathlib.CategoryTheory.Equivalence

Equivalence of categories #

An equivalence of categories C and D is a pair of functors F : C ⥤ D and G : D ⥤ C such that η : 𝟭 C ≅ F ⋙ G and ε : G ⋙ F ≅ 𝟭 D. In many situations, equivalences are a better notion of "sameness" of categories than the stricter isomorphism of categories.

Recall that one way to express that two functors F : C ⥤ D and G : D ⥤ C are adjoint is using two natural transformations η : 𝟭 C ⟶ F ⋙ G and ε : G ⋙ F ⟶ 𝟭 D, called the unit and the counit, such that the compositions F ⟶ FGF ⟶ F and G ⟶ GFG ⟶ G are the identity. Unfortunately, it is not the case that the natural isomorphisms η and ε in the definition of an equivalence automatically give an adjunction. However, it is true that

For this reason, in mathlib we define an equivalence to be a "half-adjoint equivalence", which is a tuple (F, G, η, ε) as in the first paragraph such that the composite F ⟶ FGF ⟶ F is the identity. By the remark above, this already implies that the tuple is an "adjoint equivalence", i.e., that the composite G ⟶ GFG ⟶ G is also the identity.

We also define essentially surjective functors and show that a functor is an equivalence if and only if it is full, faithful and essentially surjective.

Main definitions #

Main results #

Notations #

We write C ≌ D (\backcong, not to be confused with /\cong) for a bundled equivalence.

structure CategoryTheory.Equivalence (C : Type u₁) (D : Type u₂) [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] :
Type (max (max (max u₁ u₂) v₁) v₂)

We define an equivalence as a (half)-adjoint equivalence, a pair of functors with a unit and counit which are natural isomorphisms and the triangle law Fη ≫ εF = 1, or in other words the composite F ⟶ FGF ⟶ F is the identity.

In unit_inverse_comp, we show that this is actually an adjoint equivalence, i.e., that the composite G ⟶ GFG ⟶ G is also the identity.

The triangle equation is written as a family of equalities between morphisms, it is more complicated if we write it as an equality of natural transformations, because then we would have to insert natural transformations like F ⟶ F1.

See https://stacks.math.columbia.edu/tag/001J

  • mk' :: (
    • functor : Functor C D

      A functor in one direction

    • inverse : Functor D C

      A functor in the other direction

    • unitIso : Functor.id C self.functor.comp self.inverse

      The composition functorinverse is isomorphic to the identity

    • counitIso : self.inverse.comp self.functor Functor.id D

      The composition inversefunctor is also isomorphic to the identity

    • functor_unitIso_comp (X : C) : CategoryStruct.comp (self.functor.map (self.unitIso.hom.app X)) (self.counitIso.hom.app (self.functor.obj X)) = CategoryStruct.id (self.functor.obj X)

      The natural isomorphisms compose to the identity.

  • )
Instances For
    theorem CategoryTheory.Equivalence.ext {C : Type u₁} {D : Type u₂} {inst✝ : Category.{v₁, u₁} C} {inst✝¹ : Category.{v₂, u₂} D} {x y : C D} (functor : x.functor = y.functor) (inverse : x.inverse = y.inverse) (unitIso : HEq x.unitIso y.unitIso) (counitIso : HEq x.counitIso y.counitIso) :
    x = y

    We infix the usual notation for an equivalence

    Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.Equivalence.unit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
      Functor.id C e.functor.comp e.inverse

      The unit of an equivalence of categories.

      Equations
      • e.unit = e.unitIso.hom
      Instances For
        @[reducible, inline]
        abbrev CategoryTheory.Equivalence.counit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
        e.inverse.comp e.functor Functor.id D

        The counit of an equivalence of categories.

        Equations
        • e.counit = e.counitIso.hom
        Instances For
          @[reducible, inline]
          abbrev CategoryTheory.Equivalence.unitInv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
          e.functor.comp e.inverse Functor.id C

          The inverse of the unit of an equivalence of categories.

          Equations
          • e.unitInv = e.unitIso.inv
          Instances For
            @[reducible, inline]
            abbrev CategoryTheory.Equivalence.counitInv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
            Functor.id D e.inverse.comp e.functor

            The inverse of the counit of an equivalence of categories.

            Equations
            • e.counitInv = e.counitIso.inv
            Instances For
              @[simp]
              theorem CategoryTheory.Equivalence.Equivalence_mk'_unit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (functor : Functor C D) (inverse : Functor D C) (unit_iso : Functor.id C functor.comp inverse) (counit_iso : inverse.comp functor Functor.id D) (f : ∀ (X : C), CategoryStruct.comp (functor.map (unit_iso.hom.app X)) (counit_iso.hom.app (functor.obj X)) = CategoryStruct.id (functor.obj X)) :
              { functor := functor, inverse := inverse, unitIso := unit_iso, counitIso := counit_iso, functor_unitIso_comp := f }.unit = unit_iso.hom
              @[simp]
              theorem CategoryTheory.Equivalence.Equivalence_mk'_counit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (functor : Functor C D) (inverse : Functor D C) (unit_iso : Functor.id C functor.comp inverse) (counit_iso : inverse.comp functor Functor.id D) (f : ∀ (X : C), CategoryStruct.comp (functor.map (unit_iso.hom.app X)) (counit_iso.hom.app (functor.obj X)) = CategoryStruct.id (functor.obj X)) :
              { functor := functor, inverse := inverse, unitIso := unit_iso, counitIso := counit_iso, functor_unitIso_comp := f }.counit = counit_iso.hom
              @[simp]
              theorem CategoryTheory.Equivalence.Equivalence_mk'_unitInv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (functor : Functor C D) (inverse : Functor D C) (unit_iso : Functor.id C functor.comp inverse) (counit_iso : inverse.comp functor Functor.id D) (f : ∀ (X : C), CategoryStruct.comp (functor.map (unit_iso.hom.app X)) (counit_iso.hom.app (functor.obj X)) = CategoryStruct.id (functor.obj X)) :
              { functor := functor, inverse := inverse, unitIso := unit_iso, counitIso := counit_iso, functor_unitIso_comp := f }.unitInv = unit_iso.inv
              @[simp]
              theorem CategoryTheory.Equivalence.Equivalence_mk'_counitInv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (functor : Functor C D) (inverse : Functor D C) (unit_iso : Functor.id C functor.comp inverse) (counit_iso : inverse.comp functor Functor.id D) (f : ∀ (X : C), CategoryStruct.comp (functor.map (unit_iso.hom.app X)) (counit_iso.hom.app (functor.obj X)) = CategoryStruct.id (functor.obj X)) :
              { functor := functor, inverse := inverse, unitIso := unit_iso, counitIso := counit_iso, functor_unitIso_comp := f }.counitInv = counit_iso.inv
              @[simp]
              theorem CategoryTheory.Equivalence.functor_unit_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X : C) :
              CategoryStruct.comp (e.functor.map (e.unit.app X)) (e.counit.app (e.functor.obj X)) = CategoryStruct.id (e.functor.obj X)
              @[simp]
              theorem CategoryTheory.Equivalence.functor_unit_comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X : C) {Z : D} (h : e.functor.obj X Z) :
              CategoryStruct.comp (e.functor.map (e.unit.app X)) (CategoryStruct.comp (e.counit.app (e.functor.obj X)) h) = h
              @[simp]
              theorem CategoryTheory.Equivalence.counitInv_functor_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X : C) :
              CategoryStruct.comp (e.counitInv.app (e.functor.obj X)) (e.functor.map (e.unitInv.app X)) = CategoryStruct.id (e.functor.obj X)
              @[simp]
              theorem CategoryTheory.Equivalence.counitInv_functor_comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X : C) {Z : D} (h : e.functor.obj X Z) :
              CategoryStruct.comp (e.counitInv.app (e.functor.obj X)) (CategoryStruct.comp (e.functor.map (e.unitInv.app X)) h) = h
              theorem CategoryTheory.Equivalence.counitInv_app_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X : C) :
              e.counitInv.app (e.functor.obj X) = e.functor.map (e.unit.app X)
              theorem CategoryTheory.Equivalence.counit_app_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X : C) :
              e.counit.app (e.functor.obj X) = e.functor.map (e.unitInv.app X)
              @[simp]
              theorem CategoryTheory.Equivalence.unit_inverse_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (Y : D) :
              CategoryStruct.comp (e.unit.app (e.inverse.obj Y)) (e.inverse.map (e.counit.app Y)) = CategoryStruct.id (e.inverse.obj Y)

              The other triangle equality. The proof follows the following proof in Globular: http://globular.science/1905.001

              @[simp]
              theorem CategoryTheory.Equivalence.unit_inverse_comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (Y : D) {Z : C} (h : e.inverse.obj Y Z) :
              CategoryStruct.comp (e.unit.app (e.inverse.obj Y)) (CategoryStruct.comp (e.inverse.map (e.counit.app Y)) h) = h
              @[simp]
              theorem CategoryTheory.Equivalence.inverse_counitInv_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (Y : D) :
              CategoryStruct.comp (e.inverse.map (e.counitInv.app Y)) (e.unitInv.app (e.inverse.obj Y)) = CategoryStruct.id (e.inverse.obj Y)
              @[simp]
              theorem CategoryTheory.Equivalence.inverse_counitInv_comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (Y : D) {Z : C} (h : e.inverse.obj Y Z) :
              CategoryStruct.comp (e.inverse.map (e.counitInv.app Y)) (CategoryStruct.comp (e.unitInv.app (e.inverse.obj Y)) h) = h
              theorem CategoryTheory.Equivalence.unit_app_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (Y : D) :
              e.unit.app (e.inverse.obj Y) = e.inverse.map (e.counitInv.app Y)
              theorem CategoryTheory.Equivalence.unitInv_app_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (Y : D) :
              e.unitInv.app (e.inverse.obj Y) = e.inverse.map (e.counit.app Y)
              @[simp]
              theorem CategoryTheory.Equivalence.fun_inv_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X Y : D) (f : X Y) :
              e.functor.map (e.inverse.map f) = CategoryStruct.comp (e.counit.app X) (CategoryStruct.comp f (e.counitInv.app Y))
              theorem CategoryTheory.Equivalence.fun_inv_map_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X Y : D) (f : X Y) {Z : D} (h : e.functor.obj (e.inverse.obj Y) Z) :
              CategoryStruct.comp (e.functor.map (e.inverse.map f)) h = CategoryStruct.comp (e.counit.app X) (CategoryStruct.comp f (CategoryStruct.comp (e.counitInv.app Y) h))
              @[simp]
              theorem CategoryTheory.Equivalence.inv_fun_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X Y : C) (f : X Y) :
              e.inverse.map (e.functor.map f) = CategoryStruct.comp (e.unitInv.app X) (CategoryStruct.comp f (e.unit.app Y))
              theorem CategoryTheory.Equivalence.inv_fun_map_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) (X Y : C) (f : X Y) {Z : C} (h : e.inverse.obj (e.functor.obj Y) Z) :
              CategoryStruct.comp (e.inverse.map (e.functor.map f)) h = CategoryStruct.comp (e.unitInv.app X) (CategoryStruct.comp f (CategoryStruct.comp (e.unit.app Y) h))
              def CategoryTheory.Equivalence.adjointifyη {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (η : Functor.id C F.comp G) (ε : G.comp F Functor.id D) :
              Functor.id C F.comp G

              If η : 𝟭 C ≅ F ⋙ G is part of a (not necessarily half-adjoint) equivalence, we can upgrade it to a refined natural isomorphism adjointifyη η : 𝟭 C ≅ F ⋙ G which exhibits the properties required for a half-adjoint equivalence. See Equivalence.mk.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem CategoryTheory.Equivalence.adjointify_η_ε {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (η : Functor.id C F.comp G) (ε : G.comp F Functor.id D) (X : C) :
                CategoryStruct.comp (F.map ((adjointifyη η ε).hom.app X)) (ε.hom.app (F.obj X)) = CategoryStruct.id (F.obj X)
                theorem CategoryTheory.Equivalence.adjointify_η_ε_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (η : Functor.id C F.comp G) (ε : G.comp F Functor.id D) (X : C) {Z : D} (h : F.obj X Z) :
                CategoryStruct.comp (F.map ((adjointifyη η ε).hom.app X)) (CategoryStruct.comp (ε.hom.app (F.obj X)) h) = h
                def CategoryTheory.Equivalence.mk {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (G : Functor D C) (η : Functor.id C F.comp G) (ε : G.comp F Functor.id D) :
                C D

                Every equivalence of categories consisting of functors F and G such that F ⋙ G and G ⋙ F are naturally isomorphic to identity functors can be transformed into a half-adjoint equivalence without changing F or G.

                Equations
                Instances For

                  Equivalence of categories is reflexive.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    Equivalence of categories is symmetric.

                    Equations
                    • e.symm = { functor := e.inverse, inverse := e.functor, unitIso := e.counitIso.symm, counitIso := e.unitIso.symm, functor_unitIso_comp := }
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Equivalence.symm_unitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
                      e.symm.unitIso = e.counitIso.symm
                      @[simp]
                      theorem CategoryTheory.Equivalence.symm_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
                      e.symm.functor = e.inverse
                      @[simp]
                      theorem CategoryTheory.Equivalence.symm_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
                      e.symm.inverse = e.functor
                      @[simp]
                      theorem CategoryTheory.Equivalence.symm_counitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
                      e.symm.counitIso = e.unitIso.symm
                      def CategoryTheory.Equivalence.trans {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (f : D E) :
                      C E

                      Equivalence of categories is transitive.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Equivalence.trans_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (f : D E) :
                        (e.trans f).inverse = f.inverse.comp e.inverse
                        @[simp]
                        theorem CategoryTheory.Equivalence.trans_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (f : D E) :
                        (e.trans f).functor = e.functor.comp f.functor
                        @[simp]
                        theorem CategoryTheory.Equivalence.trans_unitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (f : D E) :
                        (e.trans f).unitIso = e.unitIso ≪≫ isoWhiskerRight (e.functor.rightUnitor.symm ≪≫ isoWhiskerLeft e.functor f.unitIso ≪≫ (e.functor.associator f.functor f.inverse).symm) e.inverse ≪≫ (e.functor.comp f.functor).associator f.inverse e.inverse
                        @[simp]
                        theorem CategoryTheory.Equivalence.trans_counitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (f : D E) :
                        (e.trans f).counitIso = ((f.inverse.comp e.inverse).associator e.functor f.functor).symm ≪≫ isoWhiskerRight (f.inverse.associator e.inverse e.functor ≪≫ isoWhiskerLeft f.inverse e.counitIso ≪≫ f.inverse.rightUnitor) f.functor ≪≫ f.counitIso
                        def CategoryTheory.Equivalence.funInvIdAssoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (F : Functor C E) :
                        e.functor.comp (e.inverse.comp F) F

                        Composing a functor with both functors of an equivalence yields a naturally isomorphic functor.

                        Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Equivalence.funInvIdAssoc_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (F : Functor C E) (X : C) :
                          (e.funInvIdAssoc F).hom.app X = F.map (e.unitInv.app X)
                          @[simp]
                          theorem CategoryTheory.Equivalence.funInvIdAssoc_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (F : Functor C E) (X : C) :
                          (e.funInvIdAssoc F).inv.app X = F.map (e.unit.app X)
                          def CategoryTheory.Equivalence.invFunIdAssoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (F : Functor D E) :
                          e.inverse.comp (e.functor.comp F) F

                          Composing a functor with both functors of an equivalence yields a naturally isomorphic functor.

                          Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Equivalence.invFunIdAssoc_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (F : Functor D E) (X : D) :
                            (e.invFunIdAssoc F).hom.app X = F.map (e.counit.app X)
                            @[simp]
                            theorem CategoryTheory.Equivalence.invFunIdAssoc_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) (F : Functor D E) (X : D) :
                            (e.invFunIdAssoc F).inv.app X = F.map (e.counitInv.app X)

                            If C is equivalent to D, then C ⥤ E is equivalent to D ⥤ E.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Equivalence.congrLeft_counitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) :
                              e.congrLeft.counitIso = NatIso.ofComponents (fun (F : Functor D E) => e.invFunIdAssoc F)
                              @[simp]
                              theorem CategoryTheory.Equivalence.congrLeft_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) :
                              e.congrLeft.inverse = (whiskeringLeft C D E).obj e.functor
                              @[simp]
                              theorem CategoryTheory.Equivalence.congrLeft_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) :
                              e.congrLeft.functor = (whiskeringLeft D C E).obj e.inverse
                              @[simp]
                              theorem CategoryTheory.Equivalence.congrLeft_unitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) :
                              e.congrLeft.unitIso = NatIso.ofComponents (fun (F : Functor C E) => (e.funInvIdAssoc F).symm)

                              If C is equivalent to D, then E ⥤ C is equivalent to E ⥤ D.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Equivalence.congrRight_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) :
                                e.congrRight.functor = (whiskeringRight E C D).obj e.functor
                                @[simp]
                                theorem CategoryTheory.Equivalence.congrRight_unitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) :
                                e.congrRight.unitIso = NatIso.ofComponents (fun (F : Functor E C) => F.rightUnitor.symm ≪≫ isoWhiskerLeft F e.unitIso ≪≫ F.associator e.functor e.inverse)
                                @[simp]
                                theorem CategoryTheory.Equivalence.congrRight_counitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) :
                                e.congrRight.counitIso = NatIso.ofComponents (fun (F : Functor E D) => F.associator e.inverse e.functor ≪≫ isoWhiskerLeft F e.counitIso ≪≫ F.rightUnitor)
                                @[simp]
                                theorem CategoryTheory.Equivalence.congrRight_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (e : C D) :
                                e.congrRight.inverse = (whiskeringRight E D C).obj e.inverse
                                @[simp]
                                theorem CategoryTheory.Equivalence.cancel_unit_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {X Y : C} (f f' : X Y) :
                                CategoryStruct.comp f (e.unit.app Y) = CategoryStruct.comp f' (e.unit.app Y) f = f'
                                @[simp]
                                theorem CategoryTheory.Equivalence.cancel_unitInv_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {X Y : C} (f f' : X e.inverse.obj (e.functor.obj Y)) :
                                CategoryStruct.comp f (e.unitInv.app Y) = CategoryStruct.comp f' (e.unitInv.app Y) f = f'
                                @[simp]
                                theorem CategoryTheory.Equivalence.cancel_counit_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {X Y : D} (f f' : X e.functor.obj (e.inverse.obj Y)) :
                                CategoryStruct.comp f (e.counit.app Y) = CategoryStruct.comp f' (e.counit.app Y) f = f'
                                @[simp]
                                theorem CategoryTheory.Equivalence.cancel_counitInv_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {X Y : D} (f f' : X Y) :
                                CategoryStruct.comp f (e.counitInv.app Y) = CategoryStruct.comp f' (e.counitInv.app Y) f = f'
                                @[simp]
                                theorem CategoryTheory.Equivalence.cancel_unit_right_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {W X X' Y : C} (f : W X) (g : X Y) (f' : W X') (g' : X' Y) :
                                @[simp]
                                theorem CategoryTheory.Equivalence.cancel_counitInv_right_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {W X X' Y : D} (f : W X) (g : X Y) (f' : W X') (g' : X' Y) :
                                @[simp]
                                theorem CategoryTheory.Equivalence.cancel_unit_right_assoc' {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {W X X' Y Y' Z : C} (f : W X) (g : X Y) (h : Y Z) (f' : W X') (g' : X' Y') (h' : Y' Z) :
                                @[simp]
                                theorem CategoryTheory.Equivalence.cancel_counitInv_right_assoc' {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {W X X' Y Y' Z : D} (f : W X) (g : X Y) (h : Y Z) (f' : W X') (g' : X' Y') (h' : Y' Z) :
                                def CategoryTheory.Equivalence.powNat {C : Type u₁} [Category.{v₁, u₁} C] (e : C C) :
                                (C C)

                                Natural number powers of an auto-equivalence. Use (^) instead.

                                Equations
                                Instances For
                                  def CategoryTheory.Equivalence.pow {C : Type u₁} [Category.{v₁, u₁} C] (e : C C) :
                                  (C C)

                                  Powers of an auto-equivalence. Use (^) instead.

                                  Equations
                                  Instances For
                                    @[simp]
                                    @[simp]
                                    theorem CategoryTheory.Equivalence.pow_one {C : Type u₁} [Category.{v₁, u₁} C] (e : C C) :
                                    e ^ 1 = e
                                    @[simp]
                                    theorem CategoryTheory.Equivalence.pow_neg_one {C : Type u₁} [Category.{v₁, u₁} C] (e : C C) :
                                    e ^ (-1) = e.symm
                                    instance CategoryTheory.Equivalence.essSurj_functor {C : Type u₁} [Category.{v₁, u₁} C] {E : Type u₃} [Category.{v₃, u₃} E] (e : C E) :
                                    e.functor.EssSurj

                                    The functor of an equivalence of categories is essentially surjective.

                                    See https://stacks.math.columbia.edu/tag/02C3.

                                    instance CategoryTheory.Equivalence.essSurj_inverse {C : Type u₁} [Category.{v₁, u₁} C] {E : Type u₃} [Category.{v₃, u₃} E] (e : C E) :
                                    e.inverse.EssSurj
                                    def CategoryTheory.Equivalence.fullyFaithfulFunctor {C : Type u₁} [Category.{v₁, u₁} C] {E : Type u₃} [Category.{v₃, u₃} E] (e : C E) :
                                    e.functor.FullyFaithful

                                    The functor of an equivalence of categories is fully faithful.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      def CategoryTheory.Equivalence.fullyFaithfulInverse {C : Type u₁} [Category.{v₁, u₁} C] {E : Type u₃} [Category.{v₃, u₃} E] (e : C E) :
                                      e.inverse.FullyFaithful

                                      The inverse of an equivalence of categories is fully faithful.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        instance CategoryTheory.Equivalence.faithful_functor {C : Type u₁} [Category.{v₁, u₁} C] {E : Type u₃} [Category.{v₃, u₃} E] (e : C E) :
                                        e.functor.Faithful

                                        The functor of an equivalence of categories is faithful.

                                        See https://stacks.math.columbia.edu/tag/02C3.

                                        instance CategoryTheory.Equivalence.faithful_inverse {C : Type u₁} [Category.{v₁, u₁} C] {E : Type u₃} [Category.{v₃, u₃} E] (e : C E) :
                                        e.inverse.Faithful
                                        instance CategoryTheory.Equivalence.full_functor {C : Type u₁} [Category.{v₁, u₁} C] {E : Type u₃} [Category.{v₃, u₃} E] (e : C E) :
                                        e.functor.Full

                                        The functor of an equivalence of categories is full.

                                        See https://stacks.math.columbia.edu/tag/02C3.

                                        instance CategoryTheory.Equivalence.full_inverse {C : Type u₁} [Category.{v₁, u₁} C] {E : Type u₃} [Category.{v₃, u₃} E] (e : C E) :
                                        e.inverse.Full
                                        def CategoryTheory.Equivalence.changeFunctor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor C D} (iso : e.functor G) :
                                        C D

                                        If e : C ≌ D is an equivalence of categories, and iso : e.functor ≅ G is an isomorphism, then there is an equivalence of categories whose functor is G.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Equivalence.changeFunctor_unitIso_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor C D} (iso : e.functor G) (X : C) :
                                          (e.changeFunctor iso).unitIso.hom.app X = CategoryStruct.comp (e.unitIso.hom.app X) (e.inverse.map (iso.hom.app X))
                                          @[simp]
                                          theorem CategoryTheory.Equivalence.changeFunctor_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor C D} (iso : e.functor G) :
                                          (e.changeFunctor iso).inverse = e.inverse
                                          @[simp]
                                          theorem CategoryTheory.Equivalence.changeFunctor_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor C D} (iso : e.functor G) :
                                          (e.changeFunctor iso).functor = G
                                          @[simp]
                                          theorem CategoryTheory.Equivalence.changeFunctor_counitIso_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor C D} (iso : e.functor G) (X : D) :
                                          (e.changeFunctor iso).counitIso.inv.app X = CategoryStruct.comp (e.counitIso.inv.app X) (iso.hom.app (e.inverse.obj X))
                                          @[simp]
                                          theorem CategoryTheory.Equivalence.changeFunctor_counitIso_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor C D} (iso : e.functor G) (X : D) :
                                          (e.changeFunctor iso).counitIso.hom.app X = CategoryStruct.comp (iso.inv.app (e.inverse.obj X)) (e.counitIso.hom.app X)
                                          @[simp]
                                          theorem CategoryTheory.Equivalence.changeFunctor_unitIso_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor C D} (iso : e.functor G) (X : C) :
                                          (e.changeFunctor iso).unitIso.inv.app X = CategoryStruct.comp (e.inverse.map (iso.inv.app X)) (e.unitIso.inv.app X)
                                          theorem CategoryTheory.Equivalence.changeFunctor_refl {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
                                          e.changeFunctor (Iso.refl e.functor) = e

                                          Compatibility of changeFunctor with identity isomorphisms of functors

                                          theorem CategoryTheory.Equivalence.changeFunctor_trans {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G G' : Functor C D} (iso₁ : e.functor G) (iso₂ : G G') :
                                          (e.changeFunctor iso₁).changeFunctor iso₂ = e.changeFunctor (iso₁ ≪≫ iso₂)

                                          Compatibility of changeFunctor with the composition of isomorphisms of functors

                                          def CategoryTheory.Equivalence.changeInverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor D C} (iso : e.inverse G) :
                                          C D

                                          If e : C ≌ D is an equivalence of categories, and iso : e.functor ≅ G is an isomorphism, then there is an equivalence of categories whose inverse is G.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Equivalence.changeInverse_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor D C} (iso : e.inverse G) :
                                            (e.changeInverse iso).functor = e.functor
                                            @[simp]
                                            theorem CategoryTheory.Equivalence.changeInverse_counitIso_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor D C} (iso : e.inverse G) (X : D) :
                                            (e.changeInverse iso).counitIso.inv.app X = CategoryStruct.comp (e.counitIso.inv.app X) (e.functor.map (iso.hom.app X))
                                            @[simp]
                                            theorem CategoryTheory.Equivalence.changeInverse_unitIso_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor D C} (iso : e.inverse G) (X : C) :
                                            (e.changeInverse iso).unitIso.inv.app X = CategoryStruct.comp (iso.inv.app (e.functor.obj X)) (e.unitIso.inv.app X)
                                            @[simp]
                                            theorem CategoryTheory.Equivalence.changeInverse_unitIso_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor D C} (iso : e.inverse G) (X : C) :
                                            (e.changeInverse iso).unitIso.hom.app X = CategoryStruct.comp (e.unitIso.hom.app X) (iso.hom.app (e.functor.obj X))
                                            @[simp]
                                            theorem CategoryTheory.Equivalence.changeInverse_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor D C} (iso : e.inverse G) :
                                            (e.changeInverse iso).inverse = G
                                            @[simp]
                                            theorem CategoryTheory.Equivalence.changeInverse_counitIso_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor D C} (iso : e.inverse G) (X : D) :
                                            (e.changeInverse iso).counitIso.hom.app X = CategoryStruct.comp (e.functor.map (iso.inv.app X)) (e.counitIso.hom.app X)

                                            A functor is an equivalence of categories if it is faithful, full and essentially surjective.

                                            • faithful : F.Faithful
                                            • full : F.Full
                                            • essSurj : F.EssSurj
                                            Instances
                                              instance CategoryTheory.Equivalence.isEquivalence_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : C D) :
                                              F.functor.IsEquivalence
                                              instance CategoryTheory.Equivalence.isEquivalence_inverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : C D) :
                                              F.inverse.IsEquivalence
                                              theorem CategoryTheory.Functor.IsEquivalence.mk' {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} (G : Functor D C) (η : Functor.id C F.comp G) (ε : G.comp F Functor.id D) :
                                              F.IsEquivalence

                                              To see that a functor is an equivalence, it suffices to provide an inverse functor G such that F ⋙ G and G ⋙ F are naturally isomorphic to identity functors.

                                              noncomputable def CategoryTheory.Functor.inv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.IsEquivalence] :

                                              A quasi-inverse D ⥤ C to a functor that F : C ⥤ D that is an equivalence, i.e. faithful, full, and essentially surjective.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                noncomputable def CategoryTheory.Functor.asEquivalence {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.IsEquivalence] :
                                                C D

                                                Interpret a functor that is an equivalence as an equivalence.

                                                See https://stacks.math.columbia.edu/tag/02C3.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Functor.asEquivalence_functor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.IsEquivalence] :
                                                  F.asEquivalence.functor = F
                                                  instance CategoryTheory.Functor.isEquivalence_inv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.IsEquivalence] :
                                                  F.inv.IsEquivalence
                                                  instance CategoryTheory.Functor.isEquivalence_trans {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) (G : Functor D E) [F.IsEquivalence] [G.IsEquivalence] :
                                                  (F.comp G).IsEquivalence
                                                  instance CategoryTheory.Functor.instIsEquivalenceObjWhiskeringLeft {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) [F.IsEquivalence] :
                                                  ((whiskeringLeft C D E).obj F).IsEquivalence
                                                  instance CategoryTheory.Functor.instIsEquivalenceObjWhiskeringRight {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) [F.IsEquivalence] :
                                                  ((whiskeringRight E C D).obj F).IsEquivalence
                                                  @[simp]
                                                  theorem CategoryTheory.Functor.fun_inv_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.IsEquivalence] (X Y : D) (f : X Y) :
                                                  F.map (F.inv.map f) = CategoryStruct.comp (F.asEquivalence.counit.app X) (CategoryStruct.comp f (F.asEquivalence.counitInv.app Y))
                                                  @[simp]
                                                  theorem CategoryTheory.Functor.inv_fun_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.IsEquivalence] (X Y : C) (f : X Y) :
                                                  F.inv.map (F.map f) = CategoryStruct.comp (F.asEquivalence.unitInv.app X) (CategoryStruct.comp f (F.asEquivalence.unit.app Y))
                                                  theorem CategoryTheory.Functor.isEquivalence_of_iso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor C D} (e : F G) [F.IsEquivalence] :
                                                  G.IsEquivalence
                                                  theorem CategoryTheory.Functor.isEquivalence_iff_of_iso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor C D} (e : F G) :
                                                  F.IsEquivalence G.IsEquivalence
                                                  theorem CategoryTheory.Functor.isEquivalence_of_comp_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u_1} [Category.{u_2, u_1} E] (F : Functor C D) (G : Functor D E) [G.IsEquivalence] [(F.comp G).IsEquivalence] :
                                                  F.IsEquivalence

                                                  If G and F ⋙ G are equivalence of categories, then F is also an equivalence.

                                                  theorem CategoryTheory.Functor.isEquivalence_of_comp_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u_1} [Category.{u_2, u_1} E] (F : Functor C D) (G : Functor D E) [F.IsEquivalence] [(F.comp G).IsEquivalence] :
                                                  G.IsEquivalence

                                                  If F and F ⋙ G are equivalence of categories, then G is also an equivalence.

                                                  instance CategoryTheory.Equivalence.essSurjInducedFunctor {D : Type u₂} [Category.{v₂, u₂} D] {C' : Type u_1} (e : C' D) :
                                                  (inducedFunctor e).EssSurj
                                                  instance CategoryTheory.Equivalence.inducedFunctorOfEquiv {D : Type u₂} [Category.{v₂, u₂} D] {C' : Type u_1} (e : C' D) :
                                                  (inducedFunctor e).IsEquivalence
                                                  instance CategoryTheory.Equivalence.fullyFaithfulToEssImage {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.Full] [F.Faithful] :
                                                  F.toEssImage.IsEquivalence
                                                  def CategoryTheory.Iso.compInverseIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {G : Functor C D} {H : D E} (i : F G.comp H.functor) :
                                                  F.comp H.inverse G

                                                  Construct an isomorphism F ⋙ H.inverse ≅ G from an isomorphism F ≅ G ⋙ H.functor.

                                                  Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem CategoryTheory.Iso.compInverseIso_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {G : Functor C D} {H : D E} (i : F G.comp H.functor) (X : C) :
                                                    i.compInverseIso.hom.app X = CategoryStruct.comp (H.inverse.map (i.hom.app X)) (H.unitIso.inv.app (G.obj X))
                                                    @[simp]
                                                    theorem CategoryTheory.Iso.compInverseIso_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {G : Functor C D} {H : D E} (i : F G.comp H.functor) (X : C) :
                                                    i.compInverseIso.inv.app X = CategoryStruct.comp (H.unitIso.hom.app (G.obj X)) (H.inverse.map (i.inv.app X))
                                                    def CategoryTheory.Iso.isoCompInverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {G : Functor C D} {H : D E} (i : G.comp H.functor F) :
                                                    G F.comp H.inverse

                                                    Construct an isomorphism G ≅ F ⋙ H.inverse from an isomorphism G ⋙ H.functor ≅ F.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.Iso.isoCompInverse_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {G : Functor C D} {H : D E} (i : G.comp H.functor F) (X : C) :
                                                      i.isoCompInverse.hom.app X = CategoryStruct.comp (H.unitIso.hom.app (G.obj X)) (H.inverse.map (i.hom.app X))
                                                      @[simp]
                                                      theorem CategoryTheory.Iso.isoCompInverse_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {G : Functor C D} {H : D E} (i : G.comp H.functor F) (X : C) :
                                                      i.isoCompInverse.inv.app X = CategoryStruct.comp (H.inverse.map (i.inv.app X)) (H.unitIso.inv.app (G.obj X))
                                                      def CategoryTheory.Iso.inverseCompIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {H : Functor D E} {G : C D} (i : F G.functor.comp H) :
                                                      G.inverse.comp F H

                                                      Construct an isomorphism G.inverse ⋙ F ≅ H from an isomorphism F ≅ G.functor ⋙ H.

                                                      Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.Iso.inverseCompIso_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {H : Functor D E} {G : C D} (i : F G.functor.comp H) (X : D) :
                                                        i.inverseCompIso.hom.app X = CategoryStruct.comp (i.hom.app (G.inverse.obj X)) (H.map (G.counitIso.hom.app X))
                                                        @[simp]
                                                        theorem CategoryTheory.Iso.inverseCompIso_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {H : Functor D E} {G : C D} (i : F G.functor.comp H) (X : D) :
                                                        i.inverseCompIso.inv.app X = CategoryStruct.comp (H.map (G.counitIso.inv.app X)) (i.inv.app (G.inverse.obj X))
                                                        def CategoryTheory.Iso.isoInverseComp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {H : Functor D E} {G : C D} (i : G.functor.comp H F) :
                                                        H G.inverse.comp F

                                                        Construct an isomorphism H ≅ G.inverse ⋙ F from an isomorphism G.functor ⋙ H ≅ F.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem CategoryTheory.Iso.isoInverseComp_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {H : Functor D E} {G : C D} (i : G.functor.comp H F) (X : D) :
                                                          i.isoInverseComp.hom.app X = CategoryStruct.comp (H.map (G.counitIso.inv.app X)) (i.hom.app (G.inverse.obj X))
                                                          @[simp]
                                                          theorem CategoryTheory.Iso.isoInverseComp_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor C E} {H : Functor D E} {G : C D} (i : G.functor.comp H F) (X : D) :
                                                          i.isoInverseComp.inv.app X = CategoryStruct.comp (i.inv.app (G.inverse.obj X)) (H.map (G.counitIso.hom.app X))
                                                          @[deprecated CategoryTheory.Functor.IsEquivalence (since := "2024-04-06")]

                                                          Alias of CategoryTheory.Functor.IsEquivalence.


                                                          A functor is an equivalence of categories if it is faithful, full and essentially surjective.

                                                          Equations
                                                          Instances For
                                                            @[deprecated CategoryTheory.Functor.fun_inv_map (since := "2024-04-06")]
                                                            theorem CategoryTheory.IsEquivalence.fun_inv_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.IsEquivalence] (X Y : D) (f : X Y) :
                                                            F.map (F.inv.map f) = CategoryStruct.comp (F.asEquivalence.counit.app X) (CategoryStruct.comp f (F.asEquivalence.counitInv.app Y))

                                                            Alias of CategoryTheory.Functor.fun_inv_map.

                                                            @[deprecated CategoryTheory.Functor.inv_fun_map (since := "2024-04-06")]
                                                            theorem CategoryTheory.IsEquivalence.inv_fun_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) [F.IsEquivalence] (X Y : C) (f : X Y) :
                                                            F.inv.map (F.map f) = CategoryStruct.comp (F.asEquivalence.unitInv.app X) (CategoryStruct.comp f (F.asEquivalence.unit.app Y))

                                                            Alias of CategoryTheory.Functor.inv_fun_map.

                                                            @[deprecated CategoryTheory.Equivalence.changeFunctor (since := "2024-04-06")]
                                                            def CategoryTheory.IsEquivalence.ofIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G : Functor C D} (iso : e.functor G) :
                                                            C D

                                                            Alias of CategoryTheory.Equivalence.changeFunctor.


                                                            If e : C ≌ D is an equivalence of categories, and iso : e.functor ≅ G is an isomorphism, then there is an equivalence of categories whose functor is G.

                                                            Equations
                                                            Instances For
                                                              @[deprecated CategoryTheory.Equivalence.changeFunctor_trans (since := "2024-04-06")]
                                                              theorem CategoryTheory.IsEquivalence.ofIso_trans {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) {G G' : Functor C D} (iso₁ : e.functor G) (iso₂ : G G') :
                                                              (e.changeFunctor iso₁).changeFunctor iso₂ = e.changeFunctor (iso₁ ≪≫ iso₂)

                                                              Alias of CategoryTheory.Equivalence.changeFunctor_trans.


                                                              Compatibility of changeFunctor with the composition of isomorphisms of functors

                                                              @[deprecated CategoryTheory.Equivalence.changeFunctor_refl (since := "2024-04-06")]
                                                              theorem CategoryTheory.IsEquivalence.ofIso_refl {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (e : C D) :
                                                              e.changeFunctor (Iso.refl e.functor) = e

                                                              Alias of CategoryTheory.Equivalence.changeFunctor_refl.


                                                              Compatibility of changeFunctor with identity isomorphisms of functors

                                                              @[deprecated CategoryTheory.Functor.isEquivalence_iff_of_iso (since := "2024-04-06")]
                                                              theorem CategoryTheory.IsEquivalence.equivOfIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor C D} (e : F G) :
                                                              F.IsEquivalence G.IsEquivalence

                                                              Alias of CategoryTheory.Functor.isEquivalence_iff_of_iso.

                                                              @[deprecated CategoryTheory.Functor.isEquivalence_of_comp_right (since := "2024-04-06")]
                                                              theorem CategoryTheory.IsEquivalence.cancelCompRight {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u_1} [Category.{u_2, u_1} E] (F : Functor C D) (G : Functor D E) [G.IsEquivalence] [(F.comp G).IsEquivalence] :
                                                              F.IsEquivalence

                                                              Alias of CategoryTheory.Functor.isEquivalence_of_comp_right.


                                                              If G and F ⋙ G are equivalence of categories, then F is also an equivalence.

                                                              @[deprecated CategoryTheory.Functor.isEquivalence_of_comp_left (since := "2024-04-06")]
                                                              theorem CategoryTheory.IsEquivalence.cancelCompLeft {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u_1} [Category.{u_2, u_1} E] (F : Functor C D) (G : Functor D E) [F.IsEquivalence] [(F.comp G).IsEquivalence] :
                                                              G.IsEquivalence

                                                              Alias of CategoryTheory.Functor.isEquivalence_of_comp_left.


                                                              If F and F ⋙ G are equivalence of categories, then G is also an equivalence.