Documentation

Mathlib.CategoryTheory.EssentialImage

Essential image of a functor #

The essential image essImage of a functor consists of the objects in the target category which are isomorphic to an object in the image of the object function. This, for instance, allows us to talk about objects belonging to a subcategory expressed as a functor rather than a subtype, preserving the principle of equivalence. For example this lets us define exponential ideals.

The essential image can also be seen as a subcategory of the target category, and witnesses that a functor decomposes into a essentially surjective functor and a fully faithful functor. (TODO: show that this decomposition forms an orthogonal factorisation system).

def CategoryTheory.Functor.essImage {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] (F : C D) :
Set D

The essential image of a functor F consists of those objects in the target category which are isomorphic to an object in the image of the function F.obj. In other words, this is the closure under isomorphism of the function F.obj. This is the "non-evil" way of describing the image of a functor.

Equations

Get the witnessing object that Y is in the subcategory given by F.

Equations

Extract the isomorphism between F.obj h.witness and Y itself.

Equations
theorem CategoryTheory.Functor.essImage.ofIso {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] {F : C D} {Y : D} {Y' : D} (h : Y Y') (hY : Y CategoryTheory.Functor.essImage F) :

Being in the essential image is a "hygenic" property: it is preserved under isomorphism.

theorem CategoryTheory.Functor.essImage.ofNatIso {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] {F : C D} {F' : C D} (h : F F') {Y : D} (hY : Y CategoryTheory.Functor.essImage F) :

If Y is in the essential image of F then it is in the essential image of F' as long as F ≅ F'≅ F'.

Isomorphic functors have equal essential images.

theorem CategoryTheory.Functor.obj_mem_essImage {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] (F : D C) (Y : D) :

An object in the image is in the essential image.

def CategoryTheory.Functor.EssImageSubcategory {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] (F : C D) :
Type u₂

The essential image of a functor, interpreted of a full subcategory of the target category.

Equations
Equations
  • CategoryTheory.Functor.instCategoryEssImageSubcategory = inferInstance
@[simp]
theorem CategoryTheory.Functor.essImageInclusion_map {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] (F : C D) :
∀ {X Y : CategoryTheory.InducedCategory D CategoryTheory.FullSubcategory.obj} (f : X Y), (CategoryTheory.Functor.essImageInclusion F).map f = f

The essential image as a subcategory has a fully faithful inclusion into the target category.

Equations
Equations
  • CategoryTheory.Functor.instFullEssImageSubcategoryInstCategoryEssImageSubcategoryEssImageInclusion = inferInstance
@[simp]
theorem CategoryTheory.Functor.toEssImage_obj_obj {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] (F : C D) (X : C) :
((CategoryTheory.Functor.toEssImage F).obj X).obj = F.obj X
@[simp]
theorem CategoryTheory.Functor.toEssImage_map {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] (F : C D) :
∀ {X Y : C} (f : X Y), (CategoryTheory.Functor.toEssImage F).map f = F.map f

Given a functor F : C ⥤ D⥤ D, we have an (essentially surjective) functor from C to the essential image of F.

Equations

The functor F factorises through its essential image, where the first functor is essentially surjective and the second is fully faithful.

Equations
  • One or more equations did not get rendered due to their size.
class CategoryTheory.EssSurj {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] (F : C D) :

A functor F : C ⥤ D⥤ D is essentially surjective if every object of D is in the essential image of F. In other words, for every Y : D, there is some X : C with F.obj X ≅ Y≅ Y.

See https://stacks.math.columbia.edu/tag/001C.

Instances
    def CategoryTheory.Functor.objPreimage {C : Type u₁} {D : Type u₂} [inst : CategoryTheory.Category C] [inst : CategoryTheory.Category D] (F : C D) [inst : CategoryTheory.EssSurj F] (Y : D) :
    C

    Given an essentially surjective functor, we can find a preimage for every object Y in the codomain. Applying the functor to this preimage will yield an object isomorphic to Y, see obj_obj_preimage_iso.

    Equations

    Applying an essentially surjective functor to a preimage of Y yields an object that is isomorphic to Y.

    Equations