Documentation

Mathlib.CategoryTheory.Whiskering

Whiskering #

Given a functor F : C ⥤ D and functors G H : D ⥤ E and a natural transformation α : G ⟶ H, we can construct a new natural transformation F ⋙ G ⟶ F ⋙ H, called whiskerLeft F α. This is the same as the horizontal composition of 𝟙 F with α.

This operation is functorial in F, and we package this as whiskeringLeft. Here (whiskeringLeft.obj F).obj G is F ⋙ G, and (whiskeringLeft.obj F).map α is whiskerLeft F α. (That is, we might have alternatively named this as the "left composition functor".)

We also provide analogues for composition on the right, and for these operations on isomorphisms.

At the end of the file, we provide the left and right unitors, and the associator, for functor composition. (In fact functor composition is definitionally associative, but very often relying on this causes extremely slow elaboration, so it is better to insert it explicitly.) We also show these natural isomorphisms satisfy the triangle and pentagon identities.

@[elab_without_expected_type]
def CategoryTheory.whiskerLeft {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G H : Functor D E} (α : G H) :
F.comp G F.comp H

If α : G ⟶ H then whiskerLeft F α : (F ⋙ G) ⟶ (F ⋙ H) has components α.app (F.obj X).

Equations
Instances For
    @[simp]
    theorem CategoryTheory.whiskerLeft_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G H : Functor D E} (α : G H) (X : C) :
    (whiskerLeft F α).app X = α.app (F.obj X)
    @[elab_without_expected_type]
    def CategoryTheory.whiskerRight {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G H : Functor C D} (α : G H) (F : Functor D E) :
    G.comp F H.comp F

    If α : G ⟶ H then whisker_right α F : (G ⋙ F) ⟶ (G ⋙ F) has components F.map (α.app X).

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.whiskerRight_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G H : Functor C D} (α : G H) (F : Functor D E) (X : C) :
      (whiskerRight α F).app X = F.map (α.app X)

      Left-composition gives a functor (C ⥤ D) ⥤ ((D ⥤ E) ⥤ (C ⥤ E)).

      (whiskeringLeft.obj F).obj G is F ⋙ G, and (whiskeringLeft.obj F).map α is whiskerLeft F α.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.whiskeringLeft_obj_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] (F : Functor C D) {X✝ Y✝ : Functor D E} (α : X✝ Y✝) :
        ((whiskeringLeft C D E).obj F).map α = whiskerLeft F α
        @[simp]
        theorem CategoryTheory.whiskeringLeft_obj_obj (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] (F : Functor C D) (G : Functor D E) :
        ((whiskeringLeft C D E).obj F).obj G = F.comp G
        @[simp]
        theorem CategoryTheory.whiskeringLeft_map_app_app (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (H : Functor D E) (c : C) :
        (((whiskeringLeft C D E).map τ).app H).app c = H.map (τ.app c)

        Right-composition gives a functor (D ⥤ E) ⥤ ((C ⥤ D) ⥤ (C ⥤ E)).

        (whiskeringRight.obj H).obj F is F ⋙ H, and (whiskeringRight.obj H).map α is whiskerRight α H.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.whiskeringRight_obj_obj (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] (H : Functor D E) (F : Functor C D) :
          ((whiskeringRight C D E).obj H).obj F = F.comp H
          @[simp]
          theorem CategoryTheory.whiskeringRight_map_app_app (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X✝ Y✝ : Functor D E} (τ : X✝ Y✝) (F : Functor C D) (c : C) :
          (((whiskeringRight C D E).map τ).app F).app c = τ.app (F.obj c)
          @[simp]
          theorem CategoryTheory.whiskeringRight_obj_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] (H : Functor D E) {X✝ Y✝ : Functor C D} (α : X✝ Y✝) :
          ((whiskeringRight C D E).obj H).map α = whiskerRight α H
          instance CategoryTheory.faithful_whiskeringRight_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor D E} [F.Faithful] :
          ((whiskeringRight C D E).obj F).Faithful
          def CategoryTheory.Functor.FullyFaithful.whiskeringRight {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor D E} (hF : F.FullyFaithful) (C : Type u_1) [Category.{u_2, u_1} C] :
          ((CategoryTheory.whiskeringRight C D E).obj F).FullyFaithful

          If F : D ⥤ E is fully faithful, then so is (whiskeringRight C D E).obj F : (C ⥤ D) ⥤ C ⥤ E.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Functor.FullyFaithful.whiskeringRight_preimage_app {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor D E} (hF : F.FullyFaithful) (C : Type u_1) [Category.{u_2, u_1} C] {X✝ Y✝ : Functor C D} (f : ((CategoryTheory.whiskeringRight C D E).obj F).obj X✝ ((CategoryTheory.whiskeringRight C D E).obj F).obj Y✝) (X : C) :
            ((hF.whiskeringRight C).preimage f).app X = hF.preimage (f.app X)

            The isomorphism between left-whiskering on the identity functor and the identity of the functor between the resulting functor categories.

            Equations
            Instances For
              theorem CategoryTheory.whiskeringLeft_obj_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {D' : Type u₄} [Category.{v₄, u₄} D'] (F : Functor C D) (G : Functor D D') :
              (whiskeringLeft C D' E).obj (F.comp G) = ((whiskeringLeft D D' E).obj G).comp ((whiskeringLeft C D E).obj F)
              def CategoryTheory.whiskeringLeftObjCompIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {D' : Type u₄} [Category.{v₄, u₄} D'] (F : Functor C D) (G : Functor D D') :
              (whiskeringLeft C D' E).obj (F.comp G) ((whiskeringLeft D D' E).obj G).comp ((whiskeringLeft C D E).obj F)

              The isomorphism between left-whiskering on the composition of functors and the composition of two left-whiskering applications.

              Equations
              Instances For

                The isomorphism between right-whiskering on the identity functor and the identity of the functor between the resulting functor categories.

                Equations
                Instances For
                  theorem CategoryTheory.whiskeringRight_obj_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {D' : Type u₄} [Category.{v₄, u₄} D'] (F : Functor C D) (G : Functor D D') :
                  ((whiskeringRight E C D).obj F).comp ((whiskeringRight E D D').obj G) = (whiskeringRight E C D').obj (F.comp G)
                  def CategoryTheory.whiskeringRightObjCompIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {D' : Type u₄} [Category.{v₄, u₄} D'] (F : Functor C D) (G : Functor D D') :
                  ((whiskeringRight E C D).obj F).comp ((whiskeringRight E D D').obj G) (whiskeringRight E C D').obj (F.comp G)

                  The isomorphism between right-whiskering on the composition of functors and the composition of two right-whiskering applications.

                  Equations
                  Instances For
                    instance CategoryTheory.full_whiskeringRight_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {F : Functor D E} [F.Faithful] [F.Full] :
                    ((whiskeringRight C D E).obj F).Full
                    @[simp]
                    theorem CategoryTheory.whiskerLeft_id {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G : Functor D E} :
                    @[simp]
                    theorem CategoryTheory.whiskerRight_id {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G : Functor C D} (F : Functor D E) :
                    @[simp]
                    theorem CategoryTheory.whiskerLeft_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G H K : Functor D E} (α : G H) (β : H K) :
                    theorem CategoryTheory.whiskerLeft_comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G H K : Functor D E} (α : G H) (β : H K) {Z : Functor C E} (h : F.comp K Z) :
                    @[simp]
                    theorem CategoryTheory.whiskerRight_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G H K : Functor C D} (α : G H) (β : H K) (F : Functor D E) :
                    theorem CategoryTheory.whiskerRight_comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G H K : Functor C D} (α : G H) (β : H K) (F : Functor D E) {Z : Functor C E} (h : K.comp F Z) :
                    def CategoryTheory.isoWhiskerLeft {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G H : Functor D E} (α : G H) :
                    F.comp G F.comp H

                    If α : G ≅ H is a natural isomorphism then iso_whisker_left F α : (F ⋙ G) ≅ (F ⋙ H) has components α.app (F.obj X).

                    Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.isoWhiskerLeft_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G H : Functor D E} (α : G H) :
                      (isoWhiskerLeft F α).hom = whiskerLeft F α.hom
                      @[simp]
                      theorem CategoryTheory.isoWhiskerLeft_inv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G H : Functor D E} (α : G H) :
                      (isoWhiskerLeft F α).inv = whiskerLeft F α.inv
                      def CategoryTheory.isoWhiskerRight {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G H : Functor C D} (α : G H) (F : Functor D E) :
                      G.comp F H.comp F

                      If α : G ≅ H then iso_whisker_right α F : (G ⋙ F) ≅ (H ⋙ F) has components F.map_iso (α.app X).

                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.isoWhiskerRight_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G H : Functor C D} (α : G H) (F : Functor D E) :
                        (isoWhiskerRight α F).hom = whiskerRight α.hom F
                        @[simp]
                        theorem CategoryTheory.isoWhiskerRight_inv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G H : Functor C D} (α : G H) (F : Functor D E) :
                        (isoWhiskerRight α F).inv = whiskerRight α.inv F
                        instance CategoryTheory.isIso_whiskerLeft {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : Functor C D) {G H : Functor D E} (α : G H) [IsIso α] :
                        instance CategoryTheory.isIso_whiskerRight {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {G H : Functor C D} (α : G H) (F : Functor D E) [IsIso α] :
                        @[simp]
                        theorem CategoryTheory.whiskerLeft_twice {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {B : Type u₄} [Category.{v₄, u₄} B] (F : Functor B C) (G : Functor C D) {H K : Functor D E} (α : H K) :
                        whiskerLeft F (whiskerLeft G α) = whiskerLeft (F.comp G) α
                        @[simp]
                        theorem CategoryTheory.whiskerRight_twice {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {B : Type u₄} [Category.{v₄, u₄} B] {H K : Functor B C} (F : Functor C D) (G : Functor D E) (α : H K) :
                        whiskerRight (whiskerRight α F) G = whiskerRight α (F.comp G)
                        theorem CategoryTheory.whiskerRight_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] {B : Type u₄} [Category.{v₄, u₄} B] (F : Functor B C) {G H : Functor C D} (α : G H) (K : Functor D E) :

                        The left unitor, a natural isomorphism ((𝟭 _) ⋙ F) ≅ F.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Functor.leftUnitor_hom_app {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] (F : Functor A B) (X : A) :
                          F.leftUnitor.hom.app X = CategoryStruct.id (F.obj X)
                          @[simp]
                          theorem CategoryTheory.Functor.leftUnitor_inv_app {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] (F : Functor A B) (X : A) :
                          F.leftUnitor.inv.app X = CategoryStruct.id (F.obj X)

                          The right unitor, a natural isomorphism (F ⋙ (𝟭 B)) ≅ F.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Functor.rightUnitor_hom_app {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] (F : Functor A B) (X : A) :
                            F.rightUnitor.hom.app X = CategoryStruct.id (F.obj X)
                            @[simp]
                            theorem CategoryTheory.Functor.rightUnitor_inv_app {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] (F : Functor A B) (X : A) :
                            F.rightUnitor.inv.app X = CategoryStruct.id (F.obj X)
                            def CategoryTheory.Functor.associator {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (F : Functor A B) (G : Functor B C) (H : Functor C D) :
                            (F.comp G).comp H F.comp (G.comp H)

                            The associator for functors, a natural isomorphism ((F ⋙ G) ⋙ H) ≅ (F ⋙ (G ⋙ H)).

                            (In fact, iso.refl _ will work here, but it tends to make Lean slow later, and it's usually best to insert explicit associators.)

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Functor.associator_hom_app {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (F : Functor A B) (G : Functor B C) (H : Functor C D) (x✝ : A) :
                              (F.associator G H).hom.app x✝ = CategoryStruct.id (((F.comp G).comp H).obj x✝)
                              @[simp]
                              theorem CategoryTheory.Functor.associator_inv_app {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (F : Functor A B) (G : Functor B C) (H : Functor C D) (x✝ : A) :
                              (F.associator G H).inv.app x✝ = CategoryStruct.id ((F.comp (G.comp H)).obj x✝)
                              theorem CategoryTheory.Functor.assoc {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] (F : Functor A B) (G : Functor B C) (H : Functor C D) :
                              (F.comp G).comp H = F.comp (G.comp H)
                              theorem CategoryTheory.Functor.triangle {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor A B) (G : Functor B C) :
                              CategoryStruct.comp (F.associator (Functor.id B) G).hom (whiskerLeft F G.leftUnitor.hom) = whiskerRight F.rightUnitor.hom G
                              theorem CategoryTheory.Functor.pentagon {A : Type u₁} [Category.{v₁, u₁} A] {B : Type u₂} [Category.{v₂, u₂} B] {C : Type u₃} [Category.{v₃, u₃} C] {D : Type u₄} [Category.{v₄, u₄} D] {E : Type u₅} [Category.{v₅, u₅} E] (F : Functor A B) (G : Functor B C) (H : Functor C D) (K : Functor D E) :
                              CategoryStruct.comp (whiskerRight (F.associator G H).hom K) (CategoryStruct.comp (F.associator (G.comp H) K).hom (whiskerLeft F (G.associator H K).hom)) = CategoryStruct.comp ((F.comp G).associator H K).hom (F.associator G (H.comp K)).hom
                              def CategoryTheory.whiskeringLeft₂ {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_4} D₁] [Category.{u_11, u_5} D₂] (E : Type u_7) [Category.{u_12, u_7} E] :
                              Functor (Functor C₁ D₁) (Functor (Functor C₂ D₂) (Functor (Functor D₁ (Functor D₂ E)) (Functor C₁ (Functor C₂ E))))

                              The obvious functor (C₁ ⥤ D₁) ⥤ (C₂ ⥤ D₂) ⥤ (D₁ ⥤ D₂ ⥤ E) ⥤ (C₁ ⥤ C₂ ⥤ E).

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.whiskeringLeft₂_map_app_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_4} D₁] [Category.{u_11, u_5} D₂] (E : Type u_7) [Category.{u_12, u_7} E] {X✝ Y✝ : Functor C₁ D₁} (ψ : X✝ Y✝) (F₂ : Functor C₂ D₂) (X : Functor D₁ (Functor D₂ E)) (c : C₁) (X✝¹ : C₂) :
                                (((((whiskeringLeft₂ E).map ψ).app F₂).app X).app c).app X✝¹ = (X.map (ψ.app c)).app (F₂.obj X✝¹)
                                @[simp]
                                theorem CategoryTheory.whiskeringLeft₂_obj_obj_obj_obj_map {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_4} D₁] [Category.{u_11, u_5} D₂] (E : Type u_7) [Category.{u_12, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (X : Functor D₁ (Functor D₂ E)) (X✝ : C₁) {X✝¹ Y✝ : C₂} (f : X✝¹ Y✝) :
                                (((((whiskeringLeft₂ E).obj F₁).obj F₂).obj X).obj X✝).map f = (X.obj (F₁.obj X✝)).map (F₂.map f)
                                @[simp]
                                theorem CategoryTheory.whiskeringLeft₂_obj_obj_obj_obj_obj {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_4} D₁] [Category.{u_11, u_5} D₂] (E : Type u_7) [Category.{u_12, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (X : Functor D₁ (Functor D₂ E)) (X✝ : C₁) (X✝ : C₂) :
                                (((((whiskeringLeft₂ E).obj F₁).obj F₂).obj X).obj X✝).obj X✝ = (X.obj (F₁.obj X✝)).obj (F₂.obj X✝)
                                @[simp]
                                theorem CategoryTheory.whiskeringLeft₂_obj_map_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_4} D₁] [Category.{u_11, u_5} D₂] (E : Type u_7) [Category.{u_12, u_7} E] (F₁ : Functor C₁ D₁) {X✝ Y✝ : Functor C₂ D₂} (φ : X✝ Y✝) (X : Functor D₁ (Functor D₂ E)) (X✝¹ : C₁) (c : C₂) :
                                (((((whiskeringLeft₂ E).obj F₁).map φ).app X).app X✝¹).app c = (X.obj (F₁.obj X✝¹)).map (φ.app c)
                                @[simp]
                                theorem CategoryTheory.whiskeringLeft₂_obj_obj_obj_map_app {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_4} D₁] [Category.{u_11, u_5} D₂] (E : Type u_7) [Category.{u_12, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (X : Functor D₁ (Functor D₂ E)) {X✝ Y✝ : C₁} (f : X✝ Y✝) (X✝¹ : C₂) :
                                (((((whiskeringLeft₂ E).obj F₁).obj F₂).obj X).map f).app X✝¹ = (X.map (F₁.map f)).app (F₂.obj X✝¹)
                                @[simp]
                                theorem CategoryTheory.whiskeringLeft₂_obj_obj_map_app_app {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_4} D₁] [Category.{u_11, u_5} D₂] (E : Type u_7) [Category.{u_12, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) {X✝ Y✝ : Functor D₁ (Functor D₂ E)} (f : X✝ Y✝) (X : C₁) (X✝¹ : C₂) :
                                (((((whiskeringLeft₂ E).obj F₁).obj F₂).map f).app X).app X✝¹ = (f.app (F₁.obj X)).app (F₂.obj X✝¹)
                                def CategoryTheory.whiskeringLeft₃ObjObjObj {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) :
                                Functor (Functor D₁ (Functor D₂ (Functor D₃ E))) (Functor C₁ (Functor C₂ (Functor C₃ E)))

                                Auxiliary definition for whiskeringLeft₃.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.whiskeringLeft₃ObjObjObj_map_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) {X✝ Y✝ : Functor D₁ (Functor D₂ (Functor D₃ E))} (f : X✝ Y✝) (X : C₁) (X✝¹ : C₂) (X✝¹ : C₃) :
                                  ((((whiskeringLeft₃ObjObjObj E F₁ F₂ F₃).map f).app X).app X✝¹).app X✝¹ = ((f.app (F₁.obj X)).app (F₂.obj X✝¹)).app (F₃.obj X✝¹)
                                  @[simp]
                                  theorem CategoryTheory.whiskeringLeft₃ObjObjObj_obj_obj_map_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) (X✝ : C₁) {X✝¹ Y✝ : C₂} (f : X✝¹ Y✝) (X✝ : C₃) :
                                  ((((whiskeringLeft₃ObjObjObj E F₁ F₂ F₃).obj X).obj X✝).map f).app X✝ = ((X.obj (F₁.obj X✝)).map (F₂.map f)).app (F₃.obj X✝)
                                  @[simp]
                                  theorem CategoryTheory.whiskeringLeft₃ObjObjObj_obj_map_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) {X✝ Y✝ : C₁} (f : X✝ Y✝) (X✝¹ : C₂) (X✝¹ : C₃) :
                                  ((((whiskeringLeft₃ObjObjObj E F₁ F₂ F₃).obj X).map f).app X✝¹).app X✝¹ = ((X.map (F₁.map f)).app (F₂.obj X✝¹)).app (F₃.obj X✝¹)
                                  @[simp]
                                  theorem CategoryTheory.whiskeringLeft₃ObjObjObj_obj_obj_obj_obj {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) (X✝ : C₁) (X✝ : C₂) (X✝ : C₃) :
                                  ((((whiskeringLeft₃ObjObjObj E F₁ F₂ F₃).obj X).obj X✝).obj X✝).obj X✝ = ((X.obj (F₁.obj X✝)).obj (F₂.obj X✝)).obj (F₃.obj X✝)
                                  @[simp]
                                  theorem CategoryTheory.whiskeringLeft₃ObjObjObj_obj_obj_obj_map {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) (X✝ : C₁) (X✝ : C₂) {X✝¹ Y✝ : C₃} (f : X✝¹ Y✝) :
                                  ((((whiskeringLeft₃ObjObjObj E F₁ F₂ F₃).obj X).obj X✝).obj X✝).map f = ((X.obj (F₁.obj X✝)).obj (F₂.obj X✝)).map (F₃.map f)
                                  def CategoryTheory.whiskeringLeft₃ObjObjMap {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) {F₃ F₃' : Functor C₃ D₃} (τ₃ : F₃ F₃') :
                                  whiskeringLeft₃ObjObjObj E F₁ F₂ F₃ whiskeringLeft₃ObjObjObj E F₁ F₂ F₃'

                                  Auxiliary definition for whiskeringLeft₃.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.whiskeringLeft₃ObjObjMap_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) {F₃ F₃' : Functor C₃ D₃} (τ₃ : F₃ F₃') (F : Functor D₁ (Functor D₂ (Functor D₃ E))) :
                                    (whiskeringLeft₃ObjObjMap E F₁ F₂ τ₃).app F = whiskerLeft F₁ (whiskerLeft F (((whiskeringLeft₂ E).obj F₂).map τ₃))
                                    def CategoryTheory.whiskeringLeft₃ObjObj {C₁ : Type u_1} {C₂ : Type u_2} (C₃ : Type u_3) {D₁ : Type u_4} {D₂ : Type u_5} (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) :
                                    Functor (Functor C₃ D₃) (Functor (Functor D₁ (Functor D₂ (Functor D₃ E))) (Functor C₁ (Functor C₂ (Functor C₃ E))))

                                    Auxiliary definition for whiskeringLeft₃.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.whiskeringLeft₃ObjObj_map {C₁ : Type u_1} {C₂ : Type u_2} (C₃ : Type u_3) {D₁ : Type u_4} {D₂ : Type u_5} (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) {X✝ Y✝ : Functor C₃ D₃} (τ₃ : X✝ Y✝) :
                                      (whiskeringLeft₃ObjObj C₃ D₃ E F₁ F₂).map τ₃ = whiskeringLeft₃ObjObjMap E F₁ F₂ τ₃
                                      @[simp]
                                      theorem CategoryTheory.whiskeringLeft₃ObjObj_obj {C₁ : Type u_1} {C₂ : Type u_2} (C₃ : Type u_3) {D₁ : Type u_4} {D₂ : Type u_5} (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) :
                                      (whiskeringLeft₃ObjObj C₃ D₃ E F₁ F₂).obj F₃ = whiskeringLeft₃ObjObjObj E F₁ F₂ F₃
                                      def CategoryTheory.whiskeringLeft₃ObjMap {C₁ : Type u_1} {C₂ : Type u_2} (C₃ : Type u_3) {D₁ : Type u_4} {D₂ : Type u_5} (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) {F₂ F₂' : Functor C₂ D₂} (τ₂ : F₂ F₂') :
                                      whiskeringLeft₃ObjObj C₃ D₃ E F₁ F₂ whiskeringLeft₃ObjObj C₃ D₃ E F₁ F₂'

                                      Auxiliary definition for whiskeringLeft₃.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        @[simp]
                                        theorem CategoryTheory.whiskeringLeft₃ObjMap_app {C₁ : Type u_1} {C₂ : Type u_2} (C₃ : Type u_3) {D₁ : Type u_4} {D₂ : Type u_5} (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) {F₂ F₂' : Functor C₂ D₂} (τ₂ : F₂ F₂') (F₃ : Functor C₃ D₃) :
                                        (whiskeringLeft₃ObjMap C₃ D₃ E F₁ τ₂).app F₃ = whiskerRight ((whiskeringRight D₁ (Functor D₂ (Functor D₃ E)) (Functor C₂ (Functor C₃ E))).map (((whiskeringLeft₂ E).map τ₂).app F₃)) ((whiskeringLeft C₁ D₁ (Functor C₂ (Functor C₃ E))).obj F₁)
                                        def CategoryTheory.whiskeringLeft₃Obj {C₁ : Type u_1} (C₂ : Type u_2) (C₃ : Type u_3) {D₁ : Type u_4} (D₂ : Type u_5) (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) :
                                        Functor (Functor C₂ D₂) (Functor (Functor C₃ D₃) (Functor (Functor D₁ (Functor D₂ (Functor D₃ E))) (Functor C₁ (Functor C₂ (Functor C₃ E)))))

                                        Auxiliary definition for whiskeringLeft₃.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.whiskeringLeft₃Obj_map {C₁ : Type u_1} (C₂ : Type u_2) (C₃ : Type u_3) {D₁ : Type u_4} (D₂ : Type u_5) (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) {X✝ Y✝ : Functor C₂ D₂} (τ₂ : X✝ Y✝) :
                                          (whiskeringLeft₃Obj C₂ C₃ D₂ D₃ E F₁).map τ₂ = whiskeringLeft₃ObjMap C₃ D₃ E F₁ τ₂
                                          @[simp]
                                          theorem CategoryTheory.whiskeringLeft₃Obj_obj {C₁ : Type u_1} (C₂ : Type u_2) (C₃ : Type u_3) {D₁ : Type u_4} (D₂ : Type u_5) (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) :
                                          (whiskeringLeft₃Obj C₂ C₃ D₂ D₃ E F₁).obj F₂ = whiskeringLeft₃ObjObj C₃ D₃ E F₁ F₂
                                          def CategoryTheory.whiskeringLeft₃Map {C₁ : Type u_1} (C₂ : Type u_2) (C₃ : Type u_3) {D₁ : Type u_4} (D₂ : Type u_5) (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] {F₁ F₁' : Functor C₁ D₁} (τ₁ : F₁ F₁') :
                                          whiskeringLeft₃Obj C₂ C₃ D₂ D₃ E F₁ whiskeringLeft₃Obj C₂ C₃ D₂ D₃ E F₁'

                                          Auxiliary definition for whiskeringLeft₃.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.whiskeringLeft₃Map_app_app {C₁ : Type u_1} (C₂ : Type u_2) (C₃ : Type u_3) {D₁ : Type u_4} (D₂ : Type u_5) (D₃ : Type u_6) [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] {F₁ F₁' : Functor C₁ D₁} (τ₁ : F₁ F₁') (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) :
                                            ((whiskeringLeft₃Map C₂ C₃ D₂ D₃ E τ₁).app F₂).app F₃ = whiskerLeft ((whiskeringRight D₁ (Functor D₂ (Functor D₃ E)) (Functor C₂ (Functor C₃ E))).obj (((whiskeringLeft₂ E).obj F₂).obj F₃)) ((whiskeringLeft C₁ D₁ (Functor C₂ (Functor C₃ E))).map τ₁)
                                            def CategoryTheory.whiskeringLeft₃ {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] :
                                            Functor (Functor C₁ D₁) (Functor (Functor C₂ D₂) (Functor (Functor C₃ D₃) (Functor (Functor D₁ (Functor D₂ (Functor D₃ E))) (Functor C₁ (Functor C₂ (Functor C₃ E))))))

                                            The obvious functor (C₁ ⥤ D₁) ⥤ (C₂ ⥤ D₂) ⥤ (D₁ ⥤ D₂ ⥤ E) ⥤ (C₁ ⥤ C₂ ⥤ E).

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.whiskeringLeft₃_obj_obj_map_app_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) {X✝ Y✝ : Functor C₃ D₃} (τ₃ : X✝ Y✝) (F : Functor D₁ (Functor D₂ (Functor D₃ E))) (X : C₁) (X✝¹ : C₂) (c : C₃) :
                                              (((((((whiskeringLeft₃ E).obj F₁).obj F₂).map τ₃).app F).app X).app X✝¹).app c = ((F.obj (F₁.obj X)).obj (F₂.obj X✝¹)).map (τ₃.app c)
                                              @[simp]
                                              theorem CategoryTheory.whiskeringLeft₃_obj_map_app_app_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) {X✝ Y✝ : Functor C₂ D₂} (τ₂ : X✝ Y✝) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) (X✝¹ : C₁) (c : C₂) (X✝¹ : C₃) :
                                              (((((((whiskeringLeft₃ E).obj F₁).map τ₂).app F₃).app X).app X✝¹).app c).app X✝¹ = ((X.obj (F₁.obj X✝¹)).map (τ₂.app c)).app (F₃.obj X✝¹)
                                              @[simp]
                                              theorem CategoryTheory.whiskeringLeft₃_obj_obj_obj_obj_map_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) {X✝ Y✝ : C₁} (f : X✝ Y✝) (X✝¹ : C₂) (X✝¹ : C₃) :
                                              (((((((whiskeringLeft₃ E).obj F₁).obj F₂).obj F₃).obj X).map f).app X✝¹).app X✝¹ = ((X.map (F₁.map f)).app (F₂.obj X✝¹)).app (F₃.obj X✝¹)
                                              @[simp]
                                              theorem CategoryTheory.whiskeringLeft₃_map_app_app_app_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] {X✝ Y✝ : Functor C₁ D₁} (τ₁ : X✝ Y✝) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) (c : C₁) (X✝¹ : C₂) (X✝¹ : C₃) :
                                              (((((((whiskeringLeft₃ E).map τ₁).app F₂).app F₃).app X).app c).app X✝¹).app X✝¹ = ((X.map (τ₁.app c)).app (F₂.obj X✝¹)).app (F₃.obj X✝¹)
                                              @[simp]
                                              theorem CategoryTheory.whiskeringLeft₃_obj_obj_obj_obj_obj_obj_obj {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) (X✝ : C₁) (X✝ : C₂) (X✝ : C₃) :
                                              (((((((whiskeringLeft₃ E).obj F₁).obj F₂).obj F₃).obj X).obj X✝).obj X✝).obj X✝ = ((X.obj (F₁.obj X✝)).obj (F₂.obj X✝)).obj (F₃.obj X✝)
                                              @[simp]
                                              theorem CategoryTheory.whiskeringLeft₃_obj_obj_obj_obj_obj_obj_map {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) (X✝ : C₁) (X✝ : C₂) {X✝¹ Y✝ : C₃} (f : X✝¹ Y✝) :
                                              (((((((whiskeringLeft₃ E).obj F₁).obj F₂).obj F₃).obj X).obj X✝).obj X✝).map f = ((X.obj (F₁.obj X✝)).obj (F₂.obj X✝)).map (F₃.map f)
                                              @[simp]
                                              theorem CategoryTheory.whiskeringLeft₃_obj_obj_obj_map_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) {X✝ Y✝ : Functor D₁ (Functor D₂ (Functor D₃ E))} (f : X✝ Y✝) (X : C₁) (X✝¹ : C₂) (X✝¹ : C₃) :
                                              (((((((whiskeringLeft₃ E).obj F₁).obj F₂).obj F₃).map f).app X).app X✝¹).app X✝¹ = ((f.app (F₁.obj X)).app (F₂.obj X✝¹)).app (F₃.obj X✝¹)
                                              @[simp]
                                              theorem CategoryTheory.whiskeringLeft₃_obj_obj_obj_obj_obj_map_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] [Category.{u_10, u_3} C₃] [Category.{u_11, u_4} D₁] [Category.{u_12, u_5} D₂] [Category.{u_13, u_6} D₃] (E : Type u_7) [Category.{u_14, u_7} E] (F₁ : Functor C₁ D₁) (F₂ : Functor C₂ D₂) (F₃ : Functor C₃ D₃) (X : Functor D₁ (Functor D₂ (Functor D₃ E))) (X✝ : C₁) {X✝¹ Y✝ : C₂} (f : X✝¹ Y✝) (X✝ : C₃) :
                                              (((((((whiskeringLeft₃ E).obj F₁).obj F₂).obj F₃).obj X).obj X✝).map f).app X✝ = ((X.obj (F₁.obj X✝)).map (F₂.map f)).app (F₃.obj X✝)
                                              def CategoryTheory.Functor.postcompose₃ {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [Category.{u_9, u_1} C₁] [Category.{u_10, u_2} C₂] [Category.{u_11, u_3} C₃] {E : Type u_7} [Category.{u_12, u_7} E] {E' : Type u_8} [Category.{u_13, u_8} E'] :
                                              Functor (Functor E E') (Functor (Functor C₁ (Functor C₂ (Functor C₃ E))) (Functor C₁ (Functor C₂ (Functor C₃ E'))))

                                              The "postcomposition" with a functor E ⥤ E' gives a functor (E ⥤ E') ⥤ (C₁ ⥤ C₂ ⥤ C₃ ⥤ E) ⥤ C₁ ⥤ C₂ ⥤ C₃ ⥤ E'.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                @[simp]
                                                theorem CategoryTheory.Functor.postcompose₃_map_app_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [Category.{u_9, u_1} C₁] [Category.{u_10, u_2} C₂] [Category.{u_11, u_3} C₃] {E : Type u_7} [Category.{u_12, u_7} E] {E' : Type u_8} [Category.{u_13, u_8} E'] {X✝ Y✝ : Functor E E'} (f : X✝ Y✝) (F : Functor C₁ (Functor C₂ (Functor C₃ E))) (c : C₁) (c✝ : C₂) (c✝ : C₃) :
                                                ((((postcompose₃.map f).app F).app c).app c✝).app c✝ = f.app (((F.obj c).obj c✝).obj c✝)
                                                @[simp]
                                                theorem CategoryTheory.Functor.postcompose₃_obj_obj_obj_map_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [Category.{u_9, u_1} C₁] [Category.{u_10, u_2} C₂] [Category.{u_11, u_3} C₃] {E : Type u_7} [Category.{u_12, u_7} E] {E' : Type u_8} [Category.{u_13, u_8} E'] (X : Functor E E') (F : Functor C₁ (Functor C₂ (Functor C₃ E))) (X✝ : C₁) {X✝¹ Y✝ : C₂} (f : X✝¹ Y✝) (X✝ : C₃) :
                                                ((((postcompose₃.obj X).obj F).obj X✝).map f).app X✝ = X.map (((F.obj X✝).map f).app X✝)
                                                @[simp]
                                                theorem CategoryTheory.Functor.postcompose₃_obj_obj_obj_obj_obj {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [Category.{u_9, u_1} C₁] [Category.{u_10, u_2} C₂] [Category.{u_11, u_3} C₃] {E : Type u_7} [Category.{u_12, u_7} E] {E' : Type u_8} [Category.{u_13, u_8} E'] (X : Functor E E') (F : Functor C₁ (Functor C₂ (Functor C₃ E))) (X✝ : C₁) (X✝ : C₂) (X✝ : C₃) :
                                                ((((postcompose₃.obj X).obj F).obj X✝).obj X✝).obj X✝ = X.obj (((F.obj X✝).obj X✝).obj X✝)
                                                @[simp]
                                                theorem CategoryTheory.Functor.postcompose₃_obj_obj_obj_obj_map {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [Category.{u_9, u_1} C₁] [Category.{u_10, u_2} C₂] [Category.{u_11, u_3} C₃] {E : Type u_7} [Category.{u_12, u_7} E] {E' : Type u_8} [Category.{u_13, u_8} E'] (X : Functor E E') (F : Functor C₁ (Functor C₂ (Functor C₃ E))) (X✝ : C₁) (X✝ : C₂) {X✝¹ Y✝ : C₃} (f : X✝¹ Y✝) :
                                                ((((postcompose₃.obj X).obj F).obj X✝).obj X✝).map f = X.map (((F.obj X✝).obj X✝).map f)
                                                @[simp]
                                                theorem CategoryTheory.Functor.postcompose₃_obj_obj_map_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [Category.{u_9, u_1} C₁] [Category.{u_10, u_2} C₂] [Category.{u_11, u_3} C₃] {E : Type u_7} [Category.{u_12, u_7} E] {E' : Type u_8} [Category.{u_13, u_8} E'] (X : Functor E E') (F : Functor C₁ (Functor C₂ (Functor C₃ E))) {X✝ Y✝ : C₁} (f : X✝ Y✝) (X✝¹ : C₂) (X✝¹ : C₃) :
                                                ((((postcompose₃.obj X).obj F).map f).app X✝¹).app X✝¹ = X.map (((F.map f).app X✝¹).app X✝¹)
                                                @[simp]
                                                theorem CategoryTheory.Functor.postcompose₃_obj_map_app_app_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} [Category.{u_9, u_1} C₁] [Category.{u_10, u_2} C₂] [Category.{u_11, u_3} C₃] {E : Type u_7} [Category.{u_12, u_7} E] {E' : Type u_8} [Category.{u_13, u_8} E'] (X : Functor E E') {X✝ Y✝ : Functor C₁ (Functor C₂ (Functor C₃ E))} (α : X✝ Y✝) (X✝¹ : C₁) (X✝¹ : C₂) (X✝¹ : C₃) :
                                                ((((postcompose₃.obj X).map α).app X✝¹).app X✝¹).app X✝¹ = X.map (((α.app X✝¹).app X✝¹).app X✝¹)