Documentation

Mathlib.CategoryTheory.Bicategory.End

Endomorphisms of an object in a bicategory, as a monoidal category. #

@[reducible, inline]
abbrev CategoryTheory.EndMonoidal {C : Type u} [Bicategory C] (X : C) :

The endomorphisms of an object in a bicategory can be considered as a monoidal category.

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem CategoryTheory.tensorHom_def {C : Type u} [Bicategory C] (X : C) {X₁ Y₁ X₂ Y₂ : X X} (f : X₁ Y₁) (g : X₂ Y₂) :
    MonoidalCategoryStruct.tensorHom f g = CategoryStruct.comp ((fun {x x_1 : X X} (η : x x_1) (h : X X) => Bicategory.whiskerRight η h) f X₂) ((fun {f x x_1 : X X} (η : x x_1) => Bicategory.whiskerLeft f η) g)
    @[simp]
    theorem CategoryTheory.whiskerLeft_def {C : Type u} [Bicategory C] (X : C) {f x✝ x✝¹ : X X} (η : x✝ x✝¹) :
    @[simp]
    theorem CategoryTheory.whiskerRight_def {C : Type u} [Bicategory C] (X : C) {x✝ x✝¹ : X X} (η : x✝ x✝¹) (h : X X) :