Endomorphisms of an object in a bicategory, as a monoidal category. #
@[reducible, inline]
The endomorphisms of an object in a bicategory can be considered as a monoidal category.
Equations
- CategoryTheory.EndMonoidal X = (X ⟶ X)
Instances For
Equations
instance
CategoryTheory.instInhabitedEndMonoidal
{C : Type u}
[Bicategory C]
(X : C)
:
Inhabited (EndMonoidal X)
Equations
- CategoryTheory.instInhabitedEndMonoidal X = { default := CategoryTheory.CategoryStruct.id X }
instance
CategoryTheory.instMonoidalCategoryHom
{C : Type u}
[Bicategory C]
(X : C)
:
MonoidalCategory (X ⟶ X)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CategoryTheory.tensorHom_def
{C : Type u}
[Bicategory C]
(X : C)
{X₁ Y₁ X₂ Y₂ : X ⟶ X}
(f : X₁ ⟶ Y₁)
(g : X₂ ⟶ Y₂)
:
MonoidalCategoryStruct.tensorHom f g = CategoryStruct.comp ((fun {x x_1 : X ⟶ X} (η : x ⟶ x_1) (h : X ⟶ X) => Bicategory.whiskerRight η h) f X₂)
((fun {f x x_1 : X ⟶ X} (η : x ⟶ x_1) => Bicategory.whiskerLeft f η) g)
@[simp]
theorem
CategoryTheory.whiskerLeft_def
{C : Type u}
[Bicategory C]
(X : C)
{f x✝ x✝¹ : X ⟶ X}
(η : x✝ ⟶ x✝¹)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
CategoryTheory.whiskerRight_def
{C : Type u}
[Bicategory C]
(X : C)
{x✝ x✝¹ : X ⟶ X}
(η : x✝ ⟶ x✝¹)
(h : X ⟶ X)
:
@[simp]