Free bicategories #
We define the free bicategory over a quiver. In this bicategory, the 1-morphisms are freely generated by the arrows in the quiver, and the 2-morphisms are freely generated by the formal identities, the formal unitors, and the formal associators modulo the relation derived from the axioms of a bicategory.
Main definitions #
FreeBicategory B
: the free bicategory over a quiverB
.FreeBicategory.lift F
: the pseudofunctor fromFreeBicategory B
toC
associated with a prefunctorF
fromB
toC
.
Free bicategory over a quiver. Its objects are the same as those in the underlying quiver.
Equations
Instances For
Equations
Equations
Equations
- CategoryTheory.FreeBicategory.quiver = { Hom := fun (a b : B) => CategoryTheory.FreeBicategory.Hom a b }
Equations
- One or more equations did not get rendered due to their size.
Representatives of 2-morphisms in the free bicategory.
- id {B : Type u} [Quiver B] {a b : FreeBicategory B} (f : a ⟶ b) : Hom₂ f f
- vcomp {B : Type u} [Quiver B] {a b : FreeBicategory B} {f g h : a ⟶ b} (η : Hom₂ f g) (θ : Hom₂ g h) : Hom₂ f h
- whisker_left {B : Type u} [Quiver B] {a b c : FreeBicategory B} (f : a ⟶ b) {g h : b ⟶ c} (η : Hom₂ g h) : Hom₂ (CategoryStruct.comp f g) (CategoryStruct.comp f h)
- whisker_right {B : Type u} [Quiver B] {a b c : FreeBicategory B} {f g : a ⟶ b} (h : b ⟶ c) (η : Hom₂ f g) : Hom₂ (Hom.comp f h) (Hom.comp g h)
- associator {B : Type u} [Quiver B] {a b c d : FreeBicategory B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : Hom₂ (CategoryStruct.comp (CategoryStruct.comp f g) h) (CategoryStruct.comp f (CategoryStruct.comp g h))
- associator_inv {B : Type u} [Quiver B] {a b c d : FreeBicategory B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : Hom₂ (CategoryStruct.comp f (CategoryStruct.comp g h)) (CategoryStruct.comp (CategoryStruct.comp f g) h)
- right_unitor {B : Type u} [Quiver B] {a b : FreeBicategory B} (f : a ⟶ b) : Hom₂ (CategoryStruct.comp f (CategoryStruct.id b)) f
- right_unitor_inv {B : Type u} [Quiver B] {a b : FreeBicategory B} (f : a ⟶ b) : Hom₂ f (CategoryStruct.comp f (CategoryStruct.id b))
- left_unitor {B : Type u} [Quiver B] {a b : FreeBicategory B} (f : a ⟶ b) : Hom₂ (CategoryStruct.comp (CategoryStruct.id a) f) f
- left_unitor_inv {B : Type u} [Quiver B] {a b : FreeBicategory B} (f : a ⟶ b) : Hom₂ f (CategoryStruct.comp (CategoryStruct.id a) f)
Instances For
Relations between 2-morphisms in the free bicategory.
- vcomp_right {B : Type u} [Quiver B] {a b : B} {f g h : Hom a b} (η : Hom₂ f g) (θ₁ θ₂ : Hom₂ g h) : Rel θ₁ θ₂ → Rel (η.vcomp θ₁) (η.vcomp θ₂)
- vcomp_left {B : Type u} [Quiver B] {a b : B} {f g h : Hom a b} (η₁ η₂ : Hom₂ f g) (θ : Hom₂ g h) : Rel η₁ η₂ → Rel (η₁.vcomp θ) (η₂.vcomp θ)
- id_comp {B : Type u} [Quiver B] {a b : B} {f g : Hom a b} (η : Hom₂ f g) : Rel ((Hom₂.id f).vcomp η) η
- comp_id {B : Type u} [Quiver B] {a b : B} {f g : Hom a b} (η : Hom₂ f g) : Rel (η.vcomp (Hom₂.id g)) η
- assoc {B : Type u} [Quiver B] {a b : B} {f g h i : Hom a b} (η : Hom₂ f g) (θ : Hom₂ g h) (ι : Hom₂ h i) : Rel ((η.vcomp θ).vcomp ι) (η.vcomp (θ.vcomp ι))
- whisker_left {B : Type u} [Quiver B] {a b c : B} (f : Hom a b) (g h : Hom b c) (η η' : Hom₂ g h) : Rel η η' → Rel (Hom₂.whisker_left f η) (Hom₂.whisker_left f η')
- whisker_left_id {B : Type u} [Quiver B] {a b c : B} (f : Hom a b) (g : Hom b c) : Rel (Hom₂.whisker_left f (Hom₂.id g)) (Hom₂.id (f.comp g))
- whisker_left_comp {B : Type u} [Quiver B] {a b c : B} (f : Hom a b) {g h i : Hom b c} (η : Hom₂ g h) (θ : Hom₂ h i) : Rel (Hom₂.whisker_left f (η.vcomp θ)) ((Hom₂.whisker_left f η).vcomp (Hom₂.whisker_left f θ))
- id_whisker_left {B : Type u} [Quiver B] {a b : B} {f g : Hom a b} (η : Hom₂ f g) : Rel (Hom₂.whisker_left (Hom.id a) η) ((Hom₂.left_unitor f).vcomp (η.vcomp (Hom₂.left_unitor_inv g)))
- comp_whisker_left {B : Type u} [Quiver B] {a b c d : B} (f : Hom a b) (g : Hom b c) {h h' : Hom c d} (η : Hom₂ h h') : Rel (Hom₂.whisker_left (f.comp g) η) ((Hom₂.associator f g h).vcomp ((Hom₂.whisker_left f (Hom₂.whisker_left g η)).vcomp (Hom₂.associator_inv f g h')))
- whisker_right {B : Type u} [Quiver B] {a b c : B} (f g : Hom a b) (h : Hom b c) (η η' : Hom₂ f g) : Rel η η' → Rel (Hom₂.whisker_right h η) (Hom₂.whisker_right h η')
- id_whisker_right {B : Type u} [Quiver B] {a b c : B} (f : Hom a b) (g : Hom b c) : Rel (Hom₂.whisker_right g (Hom₂.id f)) (Hom₂.id (f.comp g))
- comp_whisker_right {B : Type u} [Quiver B] {a b c : B} {f g h : Hom a b} (i : Hom b c) (η : Hom₂ f g) (θ : Hom₂ g h) : Rel (Hom₂.whisker_right i (η.vcomp θ)) ((Hom₂.whisker_right i η).vcomp (Hom₂.whisker_right i θ))
- whisker_right_id {B : Type u} [Quiver B] {a b : B} {f g : Hom a b} (η : Hom₂ f g) : Rel (Hom₂.whisker_right (Hom.id b) η) ((Hom₂.right_unitor f).vcomp (η.vcomp (Hom₂.right_unitor_inv g)))
- whisker_right_comp {B : Type u} [Quiver B] {a b c d : B} {f f' : Hom a b} (g : Hom b c) (h : Hom c d) (η : Hom₂ f f') : Rel (Hom₂.whisker_right (g.comp h) η) ((Hom₂.associator_inv f g h).vcomp ((Hom₂.whisker_right h (Hom₂.whisker_right g η)).vcomp (Hom₂.associator f' g h)))
- whisker_assoc {B : Type u} [Quiver B] {a b c d : B} (f : Hom a b) {g g' : Hom b c} (η : Hom₂ g g') (h : Hom c d) : Rel (Hom₂.whisker_right h (Hom₂.whisker_left f η)) ((Hom₂.associator f g h).vcomp ((Hom₂.whisker_left f (Hom₂.whisker_right h η)).vcomp (Hom₂.associator_inv f g' h)))
- whisker_exchange {B : Type u} [Quiver B] {a b c : B} {f g : Hom a b} {h i : Hom b c} (η : Hom₂ f g) (θ : Hom₂ h i) : Rel ((Hom₂.whisker_left f θ).vcomp (Hom₂.whisker_right i η)) ((Hom₂.whisker_right h η).vcomp (Hom₂.whisker_left g θ))
- associator_hom_inv {B : Type u} [Quiver B] {a b c d : B} (f : Hom a b) (g : Hom b c) (h : Hom c d) : Rel ((Hom₂.associator f g h).vcomp (Hom₂.associator_inv f g h)) (Hom₂.id ((f.comp g).comp h))
- associator_inv_hom {B : Type u} [Quiver B] {a b c d : B} (f : Hom a b) (g : Hom b c) (h : Hom c d) : Rel ((Hom₂.associator_inv f g h).vcomp (Hom₂.associator f g h)) (Hom₂.id (f.comp (g.comp h)))
- left_unitor_hom_inv {B : Type u} [Quiver B] {a b : B} (f : Hom a b) : Rel ((Hom₂.left_unitor f).vcomp (Hom₂.left_unitor_inv f)) (Hom₂.id ((Hom.id a).comp f))
- left_unitor_inv_hom {B : Type u} [Quiver B] {a b : B} (f : Hom a b) : Rel ((Hom₂.left_unitor_inv f).vcomp (Hom₂.left_unitor f)) (Hom₂.id f)
- right_unitor_hom_inv {B : Type u} [Quiver B] {a b : B} (f : Hom a b) : Rel ((Hom₂.right_unitor f).vcomp (Hom₂.right_unitor_inv f)) (Hom₂.id (f.comp (Hom.id b)))
- right_unitor_inv_hom {B : Type u} [Quiver B] {a b : B} (f : Hom a b) : Rel ((Hom₂.right_unitor_inv f).vcomp (Hom₂.right_unitor f)) (Hom₂.id f)
- pentagon {B : Type u} [Quiver B] {a b c d e : B} (f : Hom a b) (g : Hom b c) (h : Hom c d) (i : Hom d e) : Rel ((Hom₂.whisker_right i (Hom₂.associator f g h)).vcomp ((Hom₂.associator f (g.comp h) i).vcomp (Hom₂.whisker_left f (Hom₂.associator g h i)))) ((Hom₂.associator (f.comp g) h i).vcomp (Hom₂.associator f g (h.comp i)))
- triangle {B : Type u} [Quiver B] {a b c : B} (f : Hom a b) (g : Hom b c) : Rel ((Hom₂.associator f (Hom.id b) g).vcomp (Hom₂.whisker_left f (Hom₂.left_unitor g))) (Hom₂.whisker_right g (Hom₂.right_unitor f))
Instances For
Equations
- a.homCategory b = CategoryTheory.Category.mk ⋯ ⋯ ⋯
Bicategory structure on the free bicategory.
Equations
- One or more equations did not get rendered due to their size.
Equations
Instances For
Canonical prefunctor from B
to free_bicategory B
.
Equations
- CategoryTheory.FreeBicategory.of = { obj := id, map := fun (x x_1 : B) => CategoryTheory.FreeBicategory.Hom.of }
Instances For
Auxiliary definition for lift
.
Equations
- CategoryTheory.FreeBicategory.liftHom F (CategoryTheory.FreeBicategory.Hom.of f) = F.map f
- CategoryTheory.FreeBicategory.liftHom F (CategoryTheory.FreeBicategory.Hom.id x✝) = CategoryTheory.CategoryStruct.id (F.obj x✝)
- CategoryTheory.FreeBicategory.liftHom F (f.comp g) = CategoryTheory.CategoryStruct.comp (CategoryTheory.FreeBicategory.liftHom F f) (CategoryTheory.FreeBicategory.liftHom F g)
Instances For
Auxiliary definition for lift
.
Instances For
A prefunctor from a quiver B
to a bicategory C
can be lifted to a pseudofunctor from
free_bicategory B
to C
.
Equations
- One or more equations did not get rendered due to their size.