Pseudofunctors from strict bicategory #
This file provides an API for pseudofunctors F
from a strict bicategory B
. In
particular, this shall apply to pseudofunctors from locally discrete bicategories.
Firstly, we study the compatibilities of the flexible variants mapId'
and mapComp'
of mapId
and mapComp
with respect to the composition with identities and the
associativity.
Secondly, given a commutative square t ≫ r = l ≫ b
in B
, we construct an
isomorphism F.map t ≫ F.map r ≅ F.map l ≫ F.map b
(see Pseudofunctor.isoMapOfCommSq
).
Given a commutative square CommSq t l r b
in a strict bicategory B
and
a pseudofunctor from B
, this is the natural isomorphism
F.map t ≫ F.map r ≅ F.map l ≫ F.map b
.
Equations
- F.isoMapOfCommSq sq = (F.mapComp t r).symm ≪≫ F.mapComp' l b (CategoryTheory.CategoryStruct.comp t r) ⋯
Instances For
Equational lemma for Pseudofunctor.isoMapOfCommSq
when
both vertical maps of the square are the same and horizontal maps are identities.
Equational lemma for Pseudofunctor.isoMapOfCommSq
when
both horizontal maps of the square are the same and vertical maps are identities.