Documentation

Mathlib.CategoryTheory.Bicategory.FunctorBicategory.Pseudo

The bicategory of pseudofunctors #

Given bicategories B and C, we define a bicategory structure on Pseudofunctor B C whose

We scope this instance to the CategoryTheory.Pseudofunctor.StrongTrans namespace to avoid potential future conflicts with other bicategory instances on Pseudofunctor B C.

@[reducible, inline]
abbrev CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : Pseudofunctor B C} (η : F G) {θ ι : G H} (Γ : θ ι) :

Left whiskering of a strong natural transformation between pseudofunctors and a modification.

Equations
Instances For
    @[reducible, inline]
    abbrev CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : Pseudofunctor B C} {η θ : F G} (Γ : η θ) (ι : G H) :

    Right whiskering of an strong natural transformation between pseudofunctors and a modification.

    Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.Pseudofunctor.StrongTrans.associator {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H I : Pseudofunctor B C} (η : F G) (θ : G H) (ι : H I) :

      Associator for the vertical composition of strong natural transformations between pseudofunctors.

      Equations
      Instances For
        @[reducible, inline]

        Left unitor for the vertical composition of strong natural transformations between pseudofunctors.

        Equations
        Instances For
          @[reducible, inline]

          Right unitor for the vertical composition of strong natural transformations between pseudofunctors.

          Equations
          Instances For

            A bicategory structure on pseudofunctors, with strong transformations as 1-morphisms.

            Note that this instance is scoped to the Pseudofunctor.StrongTrans namespace.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_as_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {F G H : Pseudofunctor B C} (η : F G) (x✝ x✝¹ : G H) (Γ : x✝ x✝¹) (a : B) :
              @[simp]
              theorem CategoryTheory.Pseudofunctor.StrongTrans.associator_inv_as_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {F G H : Pseudofunctor B C} (I : Pseudofunctor B C) (η : F G) (θ : G H) (ι : H I) (a : B) :
              (Bicategory.associator η θ ι).inv.as.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
              @[simp]
              theorem CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_as_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {F G H : Pseudofunctor B C} (x✝ x✝¹ : F G) (Γ : x✝ x✝¹) (η : G H) (a : B) :
              @[simp]
              theorem CategoryTheory.Pseudofunctor.StrongTrans.associator_hom_as_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {F G H : Pseudofunctor B C} (I : Pseudofunctor B C) (η : F G) (θ : G H) (ι : H I) (a : B) :
              (Bicategory.associator η θ ι).hom.as.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom