Documentation

Mathlib.CategoryTheory.Bicategory.Modification.Oplax

Modifications between oplax transformations #

A modification Γ between oplax transformations η and θ consists of a family of 2-morphisms Γ.app a : η.app a ⟶ θ.app a, which satisfies the equation (F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ (app a ▷ G.map f) for each 1-morphism f : a ⟶ b.

Main definitions #

structure CategoryTheory.Oplax.Modification {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η θ : F G) :
Type (max u₁ w₂)

A modification Γ between oplax natural transformations η and θ consists of a family of 2-morphisms Γ.app a : η.app a ⟶ θ.app a, which satisfies the equation (F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ (app a ▷ G.map f) for each 1-morphism f : a ⟶ b.

Instances For
    theorem CategoryTheory.Oplax.Modification.ext {B : Type u₁} {inst✝ : Bicategory B} {C : Type u₂} {inst✝¹ : Bicategory C} {F G : OplaxFunctor B C} {η θ : F G} {x y : Modification η θ} (app : x.app = y.app) :
    x = y
    @[simp]
    theorem CategoryTheory.Oplax.Modification.naturality_assoc {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (self : Modification η θ) {a b : B} (f : a b) {Z : F.obj a G.obj b} (h : CategoryStruct.comp (θ.app a) (G.map f) Z) :
    CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (self.app b)) (CategoryStruct.comp (θ.naturality f) h) = CategoryStruct.comp (η.naturality f) (CategoryStruct.comp (Bicategory.whiskerRight (self.app a) (G.map f)) h)
    def CategoryTheory.Oplax.Modification.id {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) :

    The identity modification.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Oplax.Modification.id_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :
      (id η).app a = CategoryStruct.id (η.app a)
      @[simp]
      theorem CategoryTheory.Oplax.Modification.whiskerLeft_naturality {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (Γ : Modification η θ) {b c : B} {a' : C} (f : a' F.obj b) (g : b c) :
      @[simp]
      theorem CategoryTheory.Oplax.Modification.whiskerLeft_naturality_assoc {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (Γ : Modification η θ) {b c : B} {a' : C} (f : a' F.obj b) (g : b c) {Z : a' G.obj c} (h : CategoryStruct.comp f (CategoryStruct.comp (θ.app b) (G.map g)) Z) :
      @[simp]
      theorem CategoryTheory.Oplax.Modification.whiskerRight_naturality {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (Γ : Modification η θ) {a b : B} {a' : C} (f : a b) (g : G.obj b a') :
      CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (Bicategory.whiskerRight (Γ.app b) g)) (CategoryStruct.comp (Bicategory.associator (F.map f) (θ.app b) g).inv (Bicategory.whiskerRight (θ.naturality f) g)) = CategoryStruct.comp (Bicategory.associator (F.map f) (η.app b) g).inv (CategoryStruct.comp (Bicategory.whiskerRight (η.naturality f) g) (Bicategory.whiskerRight (Bicategory.whiskerRight (Γ.app a) (G.map f)) g))
      @[simp]
      theorem CategoryTheory.Oplax.Modification.whiskerRight_naturality_assoc {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (Γ : Modification η θ) {a b : B} {a' : C} (f : a b) (g : G.obj b a') {Z : F.obj a a'} (h : CategoryStruct.comp (CategoryStruct.comp (θ.app a) (G.map f)) g Z) :
      def CategoryTheory.Oplax.Modification.vcomp {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ ι : F G} (Γ : Modification η θ) (Δ : Modification θ ι) :

      Vertical composition of modifications.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Oplax.Modification.vcomp_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ ι : F G} (Γ : Modification η θ) (Δ : Modification θ ι) (a : B) :
        (Γ.vcomp Δ).app a = CategoryStruct.comp (Γ.app a) (Δ.app a)

        Category structure on the oplax natural transformations between OplaxFunctors.

        Equations
        @[simp]
        theorem CategoryTheory.Oplax.category_id {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] (F G : OplaxFunctor B C) (η : F G) :
        @[simp]
        theorem CategoryTheory.Oplax.category_comp {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] (F G : OplaxFunctor B C) {X✝ Y✝ Z✝ : F G} (Γ : Modification X✝ Y✝) (Δ : Modification Y✝ Z✝) :
        CategoryStruct.comp Γ Δ = Γ.vcomp Δ
        theorem CategoryTheory.Oplax.ext {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {α β : F G} {m n : α β} (w : ∀ (b : B), m.app b = n.app b) :
        m = n
        @[simp]
        theorem CategoryTheory.Oplax.Modification.id_app' {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {X : B} {F G : OplaxFunctor B C} (α : F G) :
        (CategoryStruct.id α).app X = CategoryStruct.id (α.app X)

        Version of Modification.id_app using category notation

        @[simp]
        theorem CategoryTheory.Oplax.Modification.comp_app' {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {X : B} {F G : OplaxFunctor B C} {α β γ : F G} (m : α β) (n : β γ) :
        (CategoryStruct.comp m n).app X = CategoryStruct.comp (m.app X) (n.app X)

        Version of Modification.comp_app using category notation

        def CategoryTheory.Oplax.ModificationIso.ofComponents {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryStruct.comp (η.naturality f) (Bicategory.whiskerRight (app a).hom (G.map f))) :
        η θ

        Construct a modification isomorphism between oplax natural transformations by giving object level isomorphisms, and checking naturality only in the forward direction.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Oplax.ModificationIso.ofComponents_inv_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryStruct.comp (η.naturality f) (Bicategory.whiskerRight (app a).hom (G.map f))) (a : B) :
          (ofComponents app naturality).inv.app a = (app a).inv
          @[simp]
          theorem CategoryTheory.Oplax.ModificationIso.ofComponents_hom_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryStruct.comp (η.naturality f) (Bicategory.whiskerRight (app a).hom (G.map f))) (a : B) :
          (ofComponents app naturality).hom.app a = (app a).hom