Modifications between oplax transformations #
A modification Γ
between oplax transformations η
and θ
consists of a family of
2-morphisms Γ.app a : η.app a ⟶ θ.app a
, which satisfies the equation
(F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ (app a ▷ G.map f)
for each 1-morphism f : a ⟶ b
.
Main definitions #
Modification η θ
: modifications between oplax transformationsη
andθ
Modification.vcomp η θ
: the vertical composition of oplax transformationsη
andθ
OplaxTrans.category F G
: the category structure on the oplax transformations betweenF
andG
A modification Γ
between oplax natural transformations η
and θ
consists of a family of
2-morphisms Γ.app a : η.app a ⟶ θ.app a
, which satisfies the equation
(F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ (app a ▷ G.map f)
for each 1-morphism f : a ⟶ b
.
- app (a : B) : η.app a ⟶ θ.app a
The underlying family of 2-morphism.
- naturality {a b : B} (f : a ⟶ b) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (self.app b)) (θ.naturality f) = CategoryTheory.CategoryStruct.comp (η.naturality f) (CategoryTheory.Bicategory.whiskerRight (self.app a) (G.map f))
The naturality condition.
Instances For
The identity modification.
Equations
- CategoryTheory.Oplax.Modification.id η = { app := fun (a : B) => CategoryTheory.CategoryStruct.id (η.app a), naturality := ⋯ }
Instances For
Equations
- CategoryTheory.Oplax.Modification.instInhabited η = { default := CategoryTheory.Oplax.Modification.id η }
Vertical composition of modifications.
Equations
- Γ.vcomp Δ = { app := fun (a : B) => CategoryTheory.CategoryStruct.comp (Γ.app a) (Δ.app a), naturality := ⋯ }
Instances For
Category structure on the oplax natural transformations between OplaxFunctors.
Equations
Version of Modification.id_app
using category notation
Version of Modification.comp_app
using category notation
Construct a modification isomorphism between oplax natural transformations by giving object level isomorphisms, and checking naturality only in the forward direction.
Equations
- One or more equations did not get rendered due to their size.