Documentation

Mathlib.CategoryTheory.Bicategory.Modification.Oplax

Modifications between oplax transformations #

A modification Γ between oplax transformations η and θ consists of a family of 2-morphisms Γ.app a : η.app a ⟶ θ.app a, which satisfies the equation (F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ (app a ▷ G.map f) for each 1-morphism f : a ⟶ b.

Main definitions #

theorem CategoryTheory.Oplax.Modification.ext_iff {B : Type u₁} :
∀ {inst : CategoryTheory.Bicategory B} {C : Type u₂} {inst_1 : CategoryTheory.Bicategory C} {F G : CategoryTheory.OplaxFunctor B C} {η θ : F G} {x y : CategoryTheory.Oplax.Modification η θ}, x = y x.app = y.app
theorem CategoryTheory.Oplax.Modification.ext {B : Type u₁} :
∀ {inst : CategoryTheory.Bicategory B} {C : Type u₂} {inst_1 : CategoryTheory.Bicategory C} {F G : CategoryTheory.OplaxFunctor B C} {η θ : F G} {x y : CategoryTheory.Oplax.Modification η θ}, x.app = y.appx = y
structure CategoryTheory.Oplax.Modification {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} {G : CategoryTheory.OplaxFunctor B C} (η : F G) (θ : F G) :
Type (max u₁ w₂)

A modification Γ between oplax natural transformations η and θ consists of a family of 2-morphisms Γ.app a : η.app a ⟶ θ.app a, which satisfies the equation (F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ (app a ▷ G.map f) for each 1-morphism f : a ⟶ b.

Instances For
    @[simp]

    The naturality condition.

    The identity modification.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Oplax.Modification.vcomp_app {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} {G : CategoryTheory.OplaxFunctor B C} {η : F G} {θ : F G} {ι : F G} (Γ : CategoryTheory.Oplax.Modification η θ) (Δ : CategoryTheory.Oplax.Modification θ ι) (a : B) :
      (Γ.vcomp Δ).app a = CategoryTheory.CategoryStruct.comp (Γ.app a) (Δ.app a)

      Vertical composition of modifications.

      Equations
      Instances For
        theorem CategoryTheory.Oplax.ext_iff {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} {G : CategoryTheory.OplaxFunctor B C} {α : F G} {β : F G} {m : α β} {n : α β} :
        m = n ∀ (b : B), m.app b = n.app b
        theorem CategoryTheory.Oplax.ext {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} {G : CategoryTheory.OplaxFunctor B C} {α : F G} {β : F G} {m : α β} {n : α β} (w : ∀ (b : B), m.app b = n.app b) :
        m = n
        @[simp]
        theorem CategoryTheory.Oplax.Modification.comp_app' {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {X : B} {F : CategoryTheory.OplaxFunctor B C} {G : CategoryTheory.OplaxFunctor B C} {α : F G} {β : F G} {γ : F G} (m : α β) (n : β γ) :

        Version of Modification.comp_app using category notation

        @[simp]
        theorem CategoryTheory.Oplax.ModificationIso.ofComponents_inv_app {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} {G : CategoryTheory.OplaxFunctor B C} {η : F G} {θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryTheory.CategoryStruct.comp (η.naturality f) (CategoryTheory.Bicategory.whiskerRight (app a).hom (G.map f))) (a : B) :
        (CategoryTheory.Oplax.ModificationIso.ofComponents app naturality).inv.app a = (app a).inv
        @[simp]
        theorem CategoryTheory.Oplax.ModificationIso.ofComponents_hom_app {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} {G : CategoryTheory.OplaxFunctor B C} {η : F G} {θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryTheory.CategoryStruct.comp (η.naturality f) (CategoryTheory.Bicategory.whiskerRight (app a).hom (G.map f))) (a : B) :
        (CategoryTheory.Oplax.ModificationIso.ofComponents app naturality).hom.app a = (app a).hom
        def CategoryTheory.Oplax.ModificationIso.ofComponents {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} {G : CategoryTheory.OplaxFunctor B C} {η : F G} {θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryTheory.CategoryStruct.comp (η.naturality f) (CategoryTheory.Bicategory.whiskerRight (app a).hom (G.map f))) :
        η θ

        Construct a modification isomorphism between oplax natural transformations by giving object level isomorphisms, and checking naturality only in the forward direction.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For