Pseudofunctors from strict bicategory #
This file provides an API for pseudofunctors F from a strict bicategory B. In
particular, this shall apply to pseudofunctors from locally discrete bicategories.
Firstly, we study the compatibilities of the flexible variants mapId' and mapComp'
of mapId and mapComp with respect to the composition with identities and the
associativity.
Secondly, given a commutative square t ≫ r = l ≫ b in B, we construct an
isomorphism F.map t ≫ F.map r ≅ F.map l ≫ F.map b
(see Pseudofunctor.isoMapOfCommSq).
Alias of CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom.
Alias of CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom.
Alias of CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv.
Alias of CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight.
Alias of CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv.
Given a commutative square CommSq t l r b in a strict bicategory B and
a pseudofunctor from B, this is the natural isomorphism
F.map t ≫ F.map r ≅ F.map l ≫ F.map b.
Equations
- F.isoMapOfCommSq sq = (F.mapComp t r).symm ≪≫ F.mapComp' l b (CategoryTheory.CategoryStruct.comp t r) ⋯
Instances For
Equational lemma for Pseudofunctor.isoMapOfCommSq when
both vertical maps of the square are the same and horizontal maps are identities.
Equational lemma for Pseudofunctor.isoMapOfCommSq when
both horizontal maps of the square are the same and vertical maps are identities.