Documentation

Mathlib.CategoryTheory.Bicategory.Strict.Pseudofunctor

Pseudofunctors from strict bicategory #

This file provides an API for pseudofunctors F from a strict bicategory B. In particular, this shall apply to pseudofunctors from locally discrete bicategories.

Firstly, we study the compatibilities of the flexible variants mapId' and mapComp' of mapId and mapComp with respect to the composition with identities and the associativity.

Secondly, given a commutative square t ≫ r = l ≫ b in B, we construct an isomorphism F.map t ≫ F.map r ≅ F.map l ≫ F.map b (see Pseudofunctor.isoMapOfCommSq).

theorem CategoryTheory.Pseudofunctor.mapComp'_comp_id {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ : B} (f : b₀ b₁) :
theorem CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ : B} (f : b₀ b₁) (X : (F.obj b₀)) :
(F.mapComp' f (CategoryStruct.id b₁) f ).hom.app X = (F.mapId b₁).inv.app ((F.map f).obj X)
theorem CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ : B} (f : b₀ b₁) (X : (F.obj b₀)) {Z : (F.obj b₁)} (h : (CategoryStruct.comp (F.map f) (F.map (CategoryStruct.id b₁))).obj X Z) :
CategoryStruct.comp ((F.mapComp' f (CategoryStruct.id b₁) f ).hom.app X) h = CategoryStruct.comp ((F.mapId b₁).inv.app ((F.map f).obj X)) h
theorem CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ : B} (f : b₀ b₁) (X : (F.obj b₀)) :
(F.mapComp' f (CategoryStruct.id b₁) f ).inv.app X = (F.mapId b₁).hom.app ((F.map f).obj X)
theorem CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ : B} (f : b₀ b₁) {Z : F.obj b₀ F.obj b₁} (h : F.map f Z) :
theorem CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ : B} (f : b₀ b₁) (X : (F.obj b₀)) {Z : (F.obj b₁)} (h : (F.map f).obj X Z) :
CategoryStruct.comp ((F.mapComp' f (CategoryStruct.id b₁) f ).inv.app X) h = CategoryStruct.comp ((F.mapId b₁).hom.app ((F.map f).obj X)) h
theorem CategoryTheory.Pseudofunctor.mapComp'_id_comp {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ : B} (f : b₀ b₁) :
theorem CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ : B} (f : b₀ b₁) (X : (F.obj b₀)) :
(F.mapComp' (CategoryStruct.id b₀) f f ).hom.app X = (F.map f).map ((F.mapId b₀).inv.app X)
theorem CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ : B} (f : b₀ b₁) (X : (F.obj b₀)) {Z : (F.obj b₁)} (h : (CategoryStruct.comp (F.map (CategoryStruct.id b₀)) (F.map f)).obj X Z) :
CategoryStruct.comp ((F.mapComp' (CategoryStruct.id b₀) f f ).hom.app X) h = CategoryStruct.comp ((F.map f).map ((F.mapId b₀).inv.app X)) h
theorem CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ : B} (f : b₀ b₁) (X : (F.obj b₀)) :
(F.mapComp' (CategoryStruct.id b₀) f f ).inv.app X = (F.map f).map ((F.mapId b₀).hom.app X)
theorem CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ : B} (f : b₀ b₁) (X : (F.obj b₀)) {Z : (F.obj b₁)} (h : (F.map f).obj X Z) :
CategoryStruct.comp ((F.mapComp' (CategoryStruct.id b₀) f f ).inv.app X) h = CategoryStruct.comp ((F.map f).map ((F.mapId b₀).hom.app X)) h
theorem CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ : B} (f : b₀ b₁) {Z : F.obj b₀ F.obj b₁} (h : F.map f Z) :
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ ).hom) = CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom)
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) :
CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) ((F.mapComp' f₁₂ f₂₃ f₁₃ ).hom.app ((F.map f₀₁).obj X)) = CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) {Z : F.obj b₀ F.obj b₃} (h : CategoryStruct.comp (F.map f₀₁) (CategoryStruct.comp (F.map f₁₂) (F.map f₂₃)) Z) :
CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ ).hom) h) = CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom h))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (F.map f₂₃).obj ((F.map f₁₂).obj ((F.map f₀₁).obj X)) Z) :
CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) (CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ ).hom.app ((F.map f₀₁).obj X)) h) = CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) (CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) h)
@[deprecated CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom (since := "2025-10-02")]
theorem CategoryTheory.Pseudofunctor.mapComp'_hom_comp_whiskerLeft_mapComp'_hom {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ ).hom) = CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom)

Alias of CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom.

theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).inv (F.mapComp' f₀₂ f₂₃ f ).hom = CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) :
CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).inv.app X) ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) = CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom.app ((F.map f₀₁).obj X)) ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (F.map f₂₃).obj ((F.map f₀₂).obj X) Z) :
CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).inv.app X) (CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) h) = CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom.app ((F.map f₀₁).obj X)) (CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)) h)
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) {Z : F.obj b₀ F.obj b₃} (h : CategoryStruct.comp (F.map f₀₂) (F.map f₂₃) Z) :
CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).inv (CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom h) = CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) h))
@[deprecated CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom (since := "2025-10-02")]
theorem CategoryTheory.Pseudofunctor.mapComp'_inv_comp_mapComp'_hom {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).inv (F.mapComp' f₀₂ f₂₃ f ).hom = CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)))

Alias of CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom.

theorem CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) (F.mapComp' f₀₁ f₁₃ f hf).inv = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) (F.mapComp' f₀₂ f₂₃ f ).inv)
theorem CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) :
CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)) ((F.mapComp' f₀₁ f₁₃ f hf).inv.app X) = CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)) ((F.mapComp' f₀₂ f₂₃ f ).inv.app X)
theorem CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (F.map f).obj X Z) :
CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)) (CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f hf).inv.app X) h) = CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)) (CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).inv.app X) h)
theorem CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) {Z : F.obj b₀ F.obj b₃} (h : F.map f Z) :
CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) (CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f hf).inv h) = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) (CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).inv h))
@[deprecated CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv (since := "2025-10-02")]
theorem CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'_inv {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) (F.mapComp' f₀₁ f₁₃ f hf).inv = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) (F.mapComp' f₀₂ f₂₃ f ).inv)

Alias of CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv.

theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) = CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv)
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) :
CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) = CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom.app ((F.map f₀₁).obj X))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (F.map f₂₃).obj ((F.map f₁₂).obj ((F.map f₀₁).obj X)) Z) :
CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) (CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) h) = CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) (CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom.app ((F.map f₀₁).obj X)) h)
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) {Z : F.obj b₀ F.obj b₃} (h : CategoryStruct.comp (CategoryStruct.comp (F.map f₀₁) (F.map f₁₂)) (F.map f₂₃) Z) :
CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) h) = CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv h))
@[deprecated CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight (since := "2025-10-02")]
theorem CategoryTheory.Pseudofunctor.mapComp'_hom_comp_mapComp'_hom_whiskerRight {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) = CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv)

Alias of CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight.

theorem CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) (F.mapComp' f₀₂ f₂₃ f ).inv = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) (F.mapComp' f₀₁ f₁₃ f ).inv)
theorem CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) :
CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)) ((F.mapComp' f₀₂ f₂₃ f ).inv.app X) = CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)) ((F.mapComp' f₀₁ f₁₃ f ).inv.app X)
theorem CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) {Z : F.obj b₀ F.obj b₃} (h : F.map f Z) :
CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) (CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).inv h) = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) (CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).inv h))
theorem CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (F.map f).obj X Z) :
CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)) (CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).inv.app X) h) = CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)) (CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).inv.app X) h)
@[deprecated CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv (since := "2025-10-02")]
theorem CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_comp_mapComp'_inv {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) (F.mapComp' f₀₂ f₂₃ f ).inv = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) (F.mapComp' f₀₁ f₁₃ f ).inv)

Alias of CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv.

theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
(F.mapComp' f₀₁ f₁₃ f ).inv = CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) (F.mapComp' f₀₂ f₂₃ f ).inv))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) :
(F.mapComp' f₀₁ f₁₃ f ).inv.app X = CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom.app ((F.map f₀₁).obj X)) (CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)) ((F.mapComp' f₀₂ f₂₃ f ).inv.app X))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) {Z : F.obj b₀ F.obj b₃} (h : F.map f Z) :
CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).inv h = CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) (CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).inv h)))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (F.map f).obj X Z) :
CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).inv.app X) h = CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom.app ((F.map f₀₁).obj X)) (CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)) (CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).inv.app X) h))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
(F.mapComp' f₀₁ f₁₃ f ).hom = CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv)))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) :
(F.mapComp' f₀₁ f₁₃ f ).hom.app X = CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) (CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) {Z : F.obj b₀ F.obj b₃} (h : CategoryStruct.comp (F.map f₀₁) (F.map f₁₃) Z) :
CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom h = CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) h)))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (CategoryStruct.comp (F.map f₀₁) (F.map f₁₃)).obj X Z) :
CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) h = CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) (CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) (CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)) h))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
(F.mapComp' f₀₂ f₂₃ f ).hom = CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃))))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) :
(F.mapComp' f₀₂ f₂₃ f ).hom.app X = CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) (CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom.app ((F.map f₀₁).obj X)) ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (CategoryStruct.comp (F.map f₀₂) (F.map f₂₃)).obj X Z) :
CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).hom.app X) h = CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) (CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom.app ((F.map f₀₁).obj X)) (CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv.app X)) h))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) {Z : F.obj b₀ F.obj b₃} (h : CategoryStruct.comp (F.map f₀₂) (F.map f₂₃) Z) :
CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).hom h = CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).hom) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).inv (F.map f₂₃)) h)))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
(F.mapComp' f₀₂ f₂₃ f ).inv = CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) (F.mapComp' f₀₁ f₁₃ f ).inv))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) :
(F.mapComp' f₀₂ f₂₃ f ).inv.app X = CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) (CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)) ((F.mapComp' f₀₁ f₁₃ f ).inv.app X))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (F.map f).obj X Z) :
CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).inv.app X) h = CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) (CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)) (CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).inv.app X) h))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) {Z : F.obj b₀ F.obj b₃} (h : F.map f Z) :
CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).inv h = CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) (CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).inv h)))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).inv (F.mapComp' f₀₁ f₁₃ f ).hom = CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) :
CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).inv.app X) ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) = CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) {Z : F.obj b₀ F.obj b₃} (h : CategoryStruct.comp (F.map f₀₁) (F.map f₁₃) Z) :
CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ).inv (CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ).hom h) = CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom (F.map f₂₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) h))
theorem CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app_assoc {B : Type u_1} [Bicategory B] [Bicategory.Strict B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) (X : (F.obj b₀)) {Z : (F.obj b₃)} (h : (F.map f₁₃).obj ((F.map f₀₁).obj X) Z) :
CategoryStruct.comp ((F.mapComp' f₀₂ f₂₃ f ).inv.app X) (CategoryStruct.comp ((F.mapComp' f₀₁ f₁₃ f ).hom.app X) h) = CategoryStruct.comp ((F.map f₂₃).map ((F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂).hom.app X)) (CategoryStruct.comp ((F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv.app ((F.map f₀₁).obj X)) h)
def CategoryTheory.Pseudofunctor.isoMapOfCommSq {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {X₁ X₂ Y₁ Y₂ : B} {t : X₁ Y₁} {l : X₁ X₂} {r : Y₁ Y₂} {b : X₂ Y₂} (sq : CommSq t l r b) :

Given a commutative square CommSq t l r b in a strict bicategory B and a pseudofunctor from B, this is the natural isomorphism F.map t ≫ F.map r ≅ F.map l ≫ F.map b.

Equations
Instances For
    theorem CategoryTheory.Pseudofunctor.isoMapOfCommSq_eq {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : Pseudofunctor B C) {X₁ X₂ Y₁ Y₂ : B} {t : X₁ Y₁} {l : X₁ X₂} {r : Y₁ Y₂} {b : X₂ Y₂} (sq : CommSq t l r b) (φ : X₁ Y₂) ( : CategoryStruct.comp t r = φ) :
    F.isoMapOfCommSq sq = (F.mapComp' t r φ ).symm ≪≫ F.mapComp' l b φ

    Equational lemma for Pseudofunctor.isoMapOfCommSq when both vertical maps of the square are the same and horizontal maps are identities.

    Equational lemma for Pseudofunctor.isoMapOfCommSq when both horizontal maps of the square are the same and vertical maps are identities.

    theorem CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp' {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : LaxFunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
    CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃)) (F.mapComp' f₀₁ f₁₃ f hf) = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂) (F.map f₂₃)) (F.mapComp' f₀₂ f₂₃ f ))
    theorem CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp'_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : LaxFunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) {Z : F.obj b₀ F.obj b₃} (h : F.map f Z) :
    CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃)) (CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f hf) h) = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂) (F.map f₂₃)) (CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ) h))
    theorem CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp' {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : LaxFunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
    CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂) (F.map f₂₃)) (F.mapComp' f₀₂ f₂₃ f ) = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃)) (F.mapComp' f₀₁ f₁₃ f ))
    theorem CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp'_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : LaxFunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) {Z : F.obj b₀ F.obj b₃} (h : F.map f Z) :
    CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂) (F.map f₂₃)) (CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ) h) = CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃)) (CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ) h))
    theorem CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp' {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : OplaxFunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) :
    CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ) (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃)) = CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ) (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂) (F.map f₂₃)) (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom)
    theorem CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp'_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : OplaxFunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₁ f₁₃ = f) {Z : F.obj b₀ F.obj b₃} (h : CategoryStruct.comp (F.map f₀₁) (CategoryStruct.comp (F.map f₁₂) (F.map f₂₃)) Z) :
    CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ) (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃)) h) = CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ) (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂) (F.map f₂₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom h))
    theorem CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : OplaxFunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) :
    CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ) (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂) (F.map f₂₃)) = CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ) (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃)) (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv)
    theorem CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight_assoc {B : Type u₁} {C : Type u₂} [Bicategory B] [Bicategory.Strict B] [Bicategory C] (F : OplaxFunctor B C) {b₀ b₁ b₂ b₃ : B} (f₀₁ : b₀ b₁) (f₁₂ : b₁ b₂) (f₂₃ : b₂ b₃) (f₀₂ : b₀ b₂) (f₁₃ : b₁ b₃) (f : b₀ b₃) (h₀₂ : CategoryStruct.comp f₀₁ f₁₂ = f₀₂) (h₁₃ : CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryStruct.comp f₀₂ f₂₃ = f) {Z : F.obj b₀ F.obj b₃} (h : CategoryStruct.comp (CategoryStruct.comp (F.map f₀₁) (F.map f₁₂)) (F.map f₂₃) Z) :
    CategoryStruct.comp (F.mapComp' f₀₂ f₂₃ f ) (CategoryStruct.comp (Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ f₀₂ h₀₂) (F.map f₂₃)) h) = CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f ) (CategoryStruct.comp (Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃)) (CategoryStruct.comp (Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).inv h))