Documentation

Mathlib.CategoryTheory.Category.Factorisation

The Factorisation Category of a Category #

Factorisation f is the category containing as objects all factorisations of a morphism f.

We show that Factorisation f always has an initial and a terminal object.

TODO: Show that Factorisation f is isomorphic to a comma category in two ways.

TODO: Make MonoFactorisation f a special case of a Factorisation f.

structure CategoryTheory.Factorisation {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) :
Type (max u v)

Factorisations of a morphism f as a structure, containing, one object, two morphisms, and the condition that their composition equals f.

  • mid : C

    The midpoint of the factorisation.

  • ι : X self.mid

    The morphism into the factorisation midpoint.

  • π : self.mid Y

    The morphism out of the factorisation midpoint.

  • ι_π : CategoryStruct.comp self self = f

    The factorisation condition.

Instances For
    structure CategoryTheory.Factorisation.Hom {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} (d e : Factorisation f) :
    Type (max u v)

    Morphisms of Factorisation f consist of morphism between their midpoints and the obvious commutativity conditions.

    • h : d.mid e.mid

      The morphism between the midpoints of the factorizations.

    • ι_h : CategoryStruct.comp d self.h = e

      The left commuting triangle of the factorization morphism.

    • h_π : CategoryStruct.comp self.h e = d

      The right commuting triangle of the factorization morphism.

    Instances For
      theorem CategoryTheory.Factorisation.Hom.ext {C : Type u} {inst✝ : Category.{v, u} C} {X Y : C} {f : X Y} {d e : Factorisation f} {x y : d.Hom e} (h : x.h = y.h) :
      x = y
      def CategoryTheory.Factorisation.Hom.id {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} (d : Factorisation f) :
      d.Hom d

      The identity morphism of Factorisation f.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Factorisation.Hom.id_h {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} (d : Factorisation f) :
        def CategoryTheory.Factorisation.Hom.comp {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} {d₁ d₂ d₃ : Factorisation f} :
        d₁.Hom d₂(g : d₂.Hom d₃) → d₁.Hom d₃

        Composition of morphisms in Factorisation f.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Factorisation.Hom.comp_h {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} {d₁ d₂ d₃ : Factorisation f} (f✝ : d₁.Hom d₂) (g : d₂.Hom d₃) :
          (f✝.comp g).h = CategoryStruct.comp f✝.h g.h

          The initial object in Factorisation f, with the domain of f as its midpoint.

          Equations
          Instances For
            @[simp]

            The unique morphism out of Factorisation.initial f.

            Equations
            • d.initialHom = { h := d, ι_h := , h_π := }
            Instances For
              @[simp]
              theorem CategoryTheory.Factorisation.initialHom_h {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} (d : Factorisation f) :
              d.initialHom.h = d
              Equations
              • d.instUniqueHomInitial = { default := d.initialHom, uniq := }

              The terminal object in Factorisation f, with the codomain of f as its midpoint.

              Equations
              Instances For

                The unique morphism into Factorisation.terminal f.

                Equations
                • d.terminalHom = { h := d, ι_h := , h_π := }
                Instances For
                  @[simp]
                  theorem CategoryTheory.Factorisation.terminalHom_h {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} (d : Factorisation f) :
                  d.terminalHom.h = d
                  Equations
                  • d.instUniqueHomTerminal = { default := d.terminalHom, uniq := }

                  The forgetful functor from Factorisation f to the underlying category C.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Factorisation.forget_obj {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} (self : Factorisation f) :
                    forget.obj self = self.mid
                    @[simp]
                    theorem CategoryTheory.Factorisation.forget_map {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} {X✝ Y✝ : Factorisation f} (f✝ : X✝ Y✝) :
                    forget.map f✝ = f✝.h