Documentation

Mathlib.CategoryTheory.Closed.FunctorCategory.Groupoid

Functors from a groupoid into a monoidal closed category form a monoidal closed category. #

(Using the pointwise monoidal structure on the functor category.)

Auxiliary definition for CategoryTheory.Functor.closed. The internal hom functor F ⟶[C] -

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Functor.closedIhom_obj_map {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F Y : Functor D C) {X✝ Y✝ : D} (f : X✝ Y✝) :
    (F.closedIhom.obj Y).map f = CategoryStruct.comp ((MonoidalClosed.pre (CategoryTheory.inv (F.map f))).app (Y.obj X✝)) ((ihom (F.obj Y✝)).map (Y.map f))
    @[simp]
    theorem CategoryTheory.Functor.closedIhom_map_app {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F : Functor D C) {X✝ Y✝ : Functor D C} (g : X✝ Y✝) (X : D) :
    (F.closedIhom.map g).app X = (ihom (F.obj X)).map (g.app X)
    @[simp]
    theorem CategoryTheory.Functor.closedIhom_obj_obj {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F Y : Functor D C) (X : D) :
    (F.closedIhom.obj Y).obj X = (ihom (F.obj X)).obj (Y.obj X)

    Auxiliary definition for CategoryTheory.Functor.closed. The unit for the adjunction (tensorLeft F) ⊣ (ihom F).

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Functor.closedUnit_app_app {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F G : Functor D C) (X : D) :
      (F.closedUnit.app G).app X = (ihom.coev (F.obj X)).app (G.obj X)

      Auxiliary definition for CategoryTheory.Functor.closed. The counit for the adjunction (tensorLeft F) ⊣ (ihom F).

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Functor.closedCounit_app_app {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F G : Functor D C) (X : D) :
        (F.closedCounit.app G).app X = (ihom.ev (F.obj X)).app (G.obj X)

        If C is a monoidal closed category and D is a groupoid, then every functor F : D ⥤ C is closed in the functor category F : D ⥤ C with the pointwise monoidal structure.

        Equations
        • F.closed = { rightAdj := F.closedIhom, adj := { unit := F.closedUnit, counit := F.closedCounit, left_triangle_components := , right_triangle_components := } }

        If C is a monoidal closed category and D is groupoid, then the functor category D ⥤ C, with the pointwise monoidal structure, is monoidal closed.

        Equations
        @[simp]
        theorem CategoryTheory.Functor.monoidalClosed_closed_adj {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (X : Functor D C) :
        Closed.adj = { unit := X.closedUnit, counit := X.closedCounit, left_triangle_components := , right_triangle_components := }
        theorem CategoryTheory.Functor.ihom_map {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F : Functor D C) {G H : Functor D C} (f : G H) :
        (ihom F).map f = F.closedIhom.map f
        theorem CategoryTheory.Functor.ihom_ev_app {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F G : Functor D C) :
        (ihom.ev F).app G = F.closedCounit.app G
        theorem CategoryTheory.Functor.ihom_coev_app {D : Type u_1} {C : Type u_2} [Groupoid D] [Category.{u_4, u_2} C] [MonoidalCategory C] [MonoidalClosed C] (F G : Functor D C) :
        (ihom.coev F).app G = F.closedUnit.app G