Documentation

Mathlib.CategoryTheory.Closed.FunctorToTypes

Functors to Type are closed. #

Show that C ⥤ Type max w v u is monoidal closed for C a category in Type u with morphisms in Type v, and w an arbitrary universe.

TODO #

It should be shown that C ⥤ Type max w v u is cartesian closed.

When F G H : C ⥤ Type max w v u, we have (G ⟶ F.functorHom H) ≃ (F ⊗ G ⟶ H).

Equations
Instances For
    @[simp]
    theorem CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app {C : Type u} [Category.{v, u} C] (F G H : Functor C (Type (max w v u))) (a✝ : MonoidalCategoryStruct.tensorObj F G H) (X : C) (a : G.obj X) (Y : C) (f : (Opposite.unop (coyoneda.rightOp.obj X)).obj Y) (a✝¹ : F.obj Y) :
    (((functorHomEquiv F G H).symm a✝).app X a).app Y f a✝¹ = a✝.app Y (a✝¹, G.map f a)
    @[simp]
    theorem CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app {C : Type u} [Category.{v, u} C] (F G H : Functor C (Type (max w v u))) (a✝ : G F.functorHom H) (X : C) (x✝ : (MonoidalCategoryStruct.tensorObj F G).obj X) :
    ((functorHomEquiv F G H) a✝).app X x✝ = match x✝ with | (x, y) => (a✝.app X y).app X (CategoryStruct.id X) x
    def CategoryTheory.FunctorToTypes.rightAdj_map {C : Type u} [Category.{v, u} C] {F G H : Functor C (Type (max w v u))} (f : G H) (c : C) (a : (F.functorHom G).obj c) :
    (F.functorHom H).obj c

    Given a morphism f : G ⟶ H, an object c : C, and an element of (F.functorHom G).obj c, construct an element of (F.functorHom H).obj c.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.FunctorToTypes.rightAdj_map_app {C : Type u} [Category.{v, u} C] {F G H : Functor C (Type (max w v u))} (f : G H) (c : C) (a : (F.functorHom G).obj c) (d : C) (b : (Opposite.unop (coyoneda.rightOp.obj c)).obj d) (a✝ : F.obj d) :
      (rightAdj_map f c a).app d b a✝ = CategoryStruct.comp (a.app d b) (f.app d) a✝
      def CategoryTheory.FunctorToTypes.rightAdj {C : Type u} [Category.{v, u} C] (F : Functor C (Type (max w v u))) :
      Functor (Functor C (Type (max w v u))) (Functor C (Type (max w v u)))

      A right adjoint of tensorLeft F.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.FunctorToTypes.rightAdj_obj_map_app {C : Type u} [Category.{v, u} C] (F G : Functor C (Type (max w v u))) {X✝ Y✝ : C} (f : X✝ Y✝) (a✝ : (F.homObjFunctor G).obj (coyoneda.rightOp.obj X✝)) (X : C) (a : (Opposite.unop (coyoneda.rightOp.obj Y✝)).obj X) (a✝¹ : F.obj X) :
        (((rightAdj F).obj G).map f a✝).app X a a✝¹ = a✝.app X (CategoryStruct.comp f a) a✝¹
        @[simp]
        theorem CategoryTheory.FunctorToTypes.rightAdj_map_app_app {C : Type u} [Category.{v, u} C] (F : Functor C (Type (max w v u))) {X✝ Y✝ : Functor C (Type (max w v u))} (f : X✝ Y✝) (c : C) (a : (F.functorHom X✝).obj c) (d : C) (b : (Opposite.unop (coyoneda.rightOp.obj c)).obj d) (a✝ : F.obj d) :
        (((rightAdj F).map f).app c a).app d b a✝ = f.app d (a.app d b a✝)
        @[simp]
        theorem CategoryTheory.FunctorToTypes.rightAdj_obj_obj {C : Type u} [Category.{v, u} C] (F G : Functor C (Type (max w v u))) (X : C) :

        The adjunction tensorLeft F ⊣ rightAdj F.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For