Documentation

Mathlib.CategoryTheory.ClosedUnderIsomorphisms

Predicates on objects which are closed under isomorphisms #

This file introduces the type class ClosedUnderIsomorphisms P for predicates P : C → Prop on the objects of a category C.

A predicate C → Prop on the objects of a category is closed under isomorphisms if whenever P X, then all the objects Y that are isomorphic to X also satisfy P Y.

  • of_iso {X Y : C} : (X Y)P XP Y
Instances
    theorem CategoryTheory.mem_of_iso {C : Type u_1} [Category.{u_2, u_1} C] (P : CProp) [ClosedUnderIsomorphisms P] {X Y : C} (e : X Y) (hX : P X) :
    P Y
    theorem CategoryTheory.mem_iff_of_iso {C : Type u_1} [Category.{u_2, u_1} C] (P : CProp) [ClosedUnderIsomorphisms P] {X Y : C} (e : X Y) :
    P X P Y
    theorem CategoryTheory.mem_of_isIso {C : Type u_1} [Category.{u_2, u_1} C] (P : CProp) [ClosedUnderIsomorphisms P] {X Y : C} (f : X Y) [IsIso f] (hX : P X) :
    P Y
    theorem CategoryTheory.mem_iff_of_isIso {C : Type u_1} [Category.{u_2, u_1} C] (P : CProp) [ClosedUnderIsomorphisms P] {X Y : C} (f : X Y) [IsIso f] :
    P X P Y
    def CategoryTheory.isoClosure {C : Type u_1} [Category.{u_2, u_1} C] (P : CProp) :
    CProp

    The closure by isomorphisms of a predicate on objects in a category.

    Equations
    Instances For
      theorem CategoryTheory.mem_isoClosure_iff {C : Type u_1} [Category.{u_2, u_1} C] (P : CProp) (X : C) :
      isoClosure P X ∃ (Y : C), ∃ (x : P Y), Nonempty (X Y)
      theorem CategoryTheory.mem_isoClosure {C : Type u_1} [Category.{u_2, u_1} C] {P : CProp} {X Y : C} (h : P X) (e : X Y) [IsIso e] :