Predicates on objects which are closed under isomorphisms #
This file introduces the type class ClosedUnderIsomorphisms P
for predicates
P : C → Prop
on the objects of a category C
.
class
CategoryTheory.ClosedUnderIsomorphisms
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
:
A predicate C → Prop
on the objects of a category is closed under isomorphisms
if whenever P X
, then all the objects Y
that are isomorphic to X
also satisfy P Y
.
- of_iso {X Y : C} : (X ≅ Y) → P X → P Y
Instances
theorem
CategoryTheory.mem_of_iso
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
[ClosedUnderIsomorphisms P]
{X Y : C}
(e : X ≅ Y)
(hX : P X)
:
P Y
theorem
CategoryTheory.mem_iff_of_iso
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
[ClosedUnderIsomorphisms P]
{X Y : C}
(e : X ≅ Y)
:
P X ↔ P Y
theorem
CategoryTheory.mem_of_isIso
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
[ClosedUnderIsomorphisms P]
{X Y : C}
(f : X ⟶ Y)
[IsIso f]
(hX : P X)
:
P Y
theorem
CategoryTheory.mem_iff_of_isIso
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
[ClosedUnderIsomorphisms P]
{X Y : C}
(f : X ⟶ Y)
[IsIso f]
:
P X ↔ P Y
The closure by isomorphisms of a predicate on objects in a category.
Equations
- CategoryTheory.isoClosure P X = ∃ (Y : C), ∃ (x : P Y), Nonempty (X ≅ Y)
Instances For
theorem
CategoryTheory.mem_isoClosure_iff
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
(X : C)
:
isoClosure P X ↔ ∃ (Y : C), ∃ (x : P Y), Nonempty (X ≅ Y)
theorem
CategoryTheory.mem_isoClosure
{C : Type u_1}
[Category.{u_2, u_1} C]
{P : C → Prop}
{X Y : C}
(h : P X)
(e : X ⟶ Y)
[IsIso e]
:
isoClosure P Y
theorem
CategoryTheory.le_isoClosure
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
:
P ≤ isoClosure P
theorem
CategoryTheory.monotone_isoClosure
{C : Type u_1}
[Category.{u_2, u_1} C]
{P Q : C → Prop}
(h : P ≤ Q)
:
isoClosure P ≤ isoClosure Q
theorem
CategoryTheory.isoClosure_eq_self
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
[ClosedUnderIsomorphisms P]
:
isoClosure P = P
theorem
CategoryTheory.isoClosure_le_iff
{C : Type u_1}
[Category.{u_2, u_1} C]
(P Q : C → Prop)
[ClosedUnderIsomorphisms Q]
:
isoClosure P ≤ Q ↔ P ≤ Q
instance
CategoryTheory.instClosedUnderIsomorphismsIsoClosure
{C : Type u_1}
[Category.{u_2, u_1} C]
(P : C → Prop)
: