Functors to ComposableArrows C 1 #
noncomputable def
CategoryTheory.ComposableArrows.functorArrows
(C : Type u)
[Category.{v, u} C]
(i j n : ℕ)
(hij : i ≤ j := by cutsat)
(hj : j ≤ n := by cutsat)
:
Functor (ComposableArrows C n) (ComposableArrows C 1)
The functor ComposableArrows C n ⥤ ComposableArrows C 1
which sends S to mk₁ (S.map' i j) when i, j and n
are such that i ≤ j and j ≤ n.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ComposableArrows.functorArrows_obj
(C : Type u)
[Category.{v, u} C]
(i j n : ℕ)
(hij : i ≤ j := by cutsat)
(hj : j ≤ n := by cutsat)
(S : ComposableArrows C n)
:
@[simp]
theorem
CategoryTheory.ComposableArrows.functorArrows_map
(C : Type u)
[Category.{v, u} C]
(i j n : ℕ)
(hij : i ≤ j := by cutsat)
(hj : j ≤ n := by cutsat)
{S S' : ComposableArrows C n}
(φ : S ⟶ S')
:
noncomputable def
CategoryTheory.ComposableArrows.mapFunctorArrows
(C : Type u)
[Category.{v, u} C]
(i j i' j' n : ℕ)
(x✝ : i ≤ j := by cutsat)
(x✝¹ : i' ≤ j' := by cutsat)
:
The natural transformation functorArrows C i j n ⟶ functorArrows C i' j' n
when i ≤ i' and j ≤ j'.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.ComposableArrows.mapFunctorArrows_app
(C : Type u)
[Category.{v, u} C]
(i j i' j' n : ℕ)
(x✝ : i ≤ j := by cutsat)
(x✝¹ : i' ≤ j' := by cutsat)
(x✝² : i ≤ i' := by cutsat)
(x✝³ : j ≤ j' := by cutsat)
(x✝⁴ : j' ≤ n := by cutsat)
(S : ComposableArrows C n)
: