Documentation

Mathlib.CategoryTheory.ComposableArrows.One

Functors to ComposableArrows C 1 #

noncomputable def CategoryTheory.ComposableArrows.functorArrows (C : Type u) [Category.{v, u} C] (i j n : ) (hij : i j := by cutsat) (hj : j n := by cutsat) :

The functor ComposableArrows C n ⥤ ComposableArrows C 1 which sends S to mk₁ (S.map' i j) when i, j and n are such that i ≤ j and j ≤ n.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.ComposableArrows.functorArrows_obj (C : Type u) [Category.{v, u} C] (i j n : ) (hij : i j := by cutsat) (hj : j n := by cutsat) (S : ComposableArrows C n) :
    (functorArrows C i j n hij hj).obj S = mk₁ (S.map' i j hij hj)
    @[simp]
    theorem CategoryTheory.ComposableArrows.functorArrows_map (C : Type u) [Category.{v, u} C] (i j n : ) (hij : i j := by cutsat) (hj : j n := by cutsat) {S S' : ComposableArrows C n} (φ : S S') :
    (functorArrows C i j n hij hj).map φ = homMk₁ (φ.app i, ) (φ.app j, )
    noncomputable def CategoryTheory.ComposableArrows.mapFunctorArrows (C : Type u) [Category.{v, u} C] (i j i' j' n : ) (x✝ : i j := by cutsat) (x✝¹ : i' j' := by cutsat) :
    autoParam (i i') _auto✝(x✝² : autoParam (j j') _auto✝¹) → (x✝³ : autoParam (j' n) _auto✝²) → functorArrows C i j n functorArrows C i' j' n

    The natural transformation functorArrows C i j n ⟶ functorArrows C i' j' n when i ≤ i' and j ≤ j'.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.ComposableArrows.mapFunctorArrows_app (C : Type u) [Category.{v, u} C] (i j i' j' n : ) (x✝ : i j := by cutsat) (x✝¹ : i' j' := by cutsat) (x✝² : i i' := by cutsat) (x✝³ : j j' := by cutsat) (x✝⁴ : j' n := by cutsat) (S : ComposableArrows C n) :
      (mapFunctorArrows C i j i' j' n x✝ x✝¹ x✝² x✝³ x✝⁴).app S = homMk₁ (S.map' i i' x✝² ) (S.map' j j' x✝³ x✝⁴)