In this file we provide various simp lemmas in its elementwise form via Tactic.Elementwise
.
@[simp]
theorem
CategoryTheory.Limits.colimit.w_apply
{J : Type u₁}
[Category.{v₁, u₁} J]
{C : Type u}
[Category.{v, u} C]
(F : Functor J C)
[HasColimit F]
{j j' : J}
(f : j ⟶ j')
[inst : HasForget C]
(x : (forget C).obj (F.obj j))
:
@[simp]
theorem
CategoryTheory.Limits.limit.lift_π_apply
{J : Type u₁}
[Category.{v₁, u₁} J]
{C : Type u}
[Category.{v, u} C]
{F : Functor J C}
[HasLimit F]
(c : Cone F)
(j : J)
[inst : HasForget C]
(x : (forget C).obj c.pt)
:
@[simp]
theorem
CategoryTheory.Limits.kernel.condition_apply
{C : Type u}
[Category.{v, u} C]
[HasZeroMorphisms C]
{X Y : C}
(f : X ⟶ Y)
[HasKernel f]
[inst : HasForget C]
(x : (forget C).obj (kernel f))
:
@[simp]
theorem
CategoryTheory.Limits.cokernel.π_desc_apply
{C : Type u}
[Category.{v, u} C]
[HasZeroMorphisms C]
{X Y : C}
(f : X ⟶ Y)
[HasCokernel f]
{W : C}
(k : Y ⟶ W)
(h : CategoryStruct.comp f k = 0)
[inst : HasForget C]
(x : (forget C).obj Y)
:
@[simp]
theorem
CategoryTheory.Limits.Cone.w_apply
{J : Type u₁}
[Category.{v₁, u₁} J]
{C : Type u₃}
[Category.{v₃, u₃} C]
{F : Functor J C}
(c : Cone F)
{j j' : J}
(f : j ⟶ j')
[inst : HasForget C]
(x : (forget C).obj (((Functor.const J).obj c.pt).obj j))
:
(F.map f) ((c.π.app j) x) = (c.π.app j') x
@[simp]
theorem
CategoryTheory.Limits.colimit.ι_desc_apply
{J : Type u₁}
[Category.{v₁, u₁} J]
{C : Type u}
[Category.{v, u} C]
{F : Functor J C}
[HasColimit F]
(c : Cocone F)
(j : J)
[inst : HasForget C]
(x : (forget C).obj (F.obj j))
:
@[simp]
theorem
CategoryTheory.Limits.kernel.lift_ι_apply
{C : Type u}
[Category.{v, u} C]
[HasZeroMorphisms C]
{X Y : C}
(f : X ⟶ Y)
[HasKernel f]
{W : C}
(k : W ⟶ X)
(h : CategoryStruct.comp k f = 0)
[inst : HasForget C]
(x : (forget C).obj W)
:
@[simp]
theorem
CategoryTheory.Limits.limit.w_apply
{J : Type u₁}
[Category.{v₁, u₁} J]
{C : Type u}
[Category.{v, u} C]
(F : Functor J C)
[HasLimit F]
{j j' : J}
(f : j ⟶ j')
[inst : HasForget C]
(x : (forget C).obj (limit F))
:
@[simp]
theorem
CategoryTheory.Limits.cokernel.condition_apply
{C : Type u}
[Category.{v, u} C]
[HasZeroMorphisms C]
{X Y : C}
(f : X ⟶ Y)
[HasCokernel f]
[inst : HasForget C]
(x : (forget C).obj X)
:
theorem
CategoryTheory.Limits.Cocone.w_apply
{J : Type u₁}
[Category.{v₁, u₁} J]
{C : Type u₃}
[Category.{v₃, u₃} C]
{F : Functor J C}
(c : Cocone F)
{j j' : J}
(f : j ⟶ j')
[inst : HasForget C]
(x : (forget C).obj (F.obj j))
:
(c.ι.app j') ((F.map f) x) = (c.ι.app j) x