Documentation

Mathlib.CategoryTheory.ConcreteCategory.Elementwise

In this file we provide various simp lemmas in its elementwise form via Tactic.Elementwise.

@[simp]
theorem CategoryTheory.Limits.colimit.w_apply {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] {j j' : J} (f : j j') {F✝ : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F✝ X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F✝] (x : ToType (F.obj j)) :
@[simp]
theorem CategoryTheory.Limits.limit.lift_π_apply {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimit F] (c : Cone F) (j : J) {F✝ : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F✝ X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F✝] (x : ToType c.pt) :
@[simp]
theorem CategoryTheory.Limits.kernel.condition_apply {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {F : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F] (x : ToType (kernel f)) :
@[simp]
theorem CategoryTheory.Limits.cokernel.π_desc_apply {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {W : C} (k : Y W) (h : CategoryStruct.comp f k = 0) {F : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F] (x : ToType Y) :
@[simp]
theorem CategoryTheory.Limits.Cone.w_apply {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J C} (c : Cone F) {j j' : J} (f : j j') {F✝ : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F✝ X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F✝] (x : ToType (((Functor.const J).obj c.pt).obj j)) :
(ConcreteCategory.hom (F.map f)) ((ConcreteCategory.hom (c.π.app j)) x) = (c.π.app j') x
@[simp]
theorem CategoryTheory.Limits.colimit.ι_desc_apply {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasColimit F] (c : Cocone F) (j : J) {F✝ : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F✝ X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F✝] (x : ToType (F.obj j)) :
@[simp]
theorem CategoryTheory.Limits.kernel.lift_ι_apply {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasKernel f] {W : C} (k : W X) (h : CategoryStruct.comp k f = 0) {F : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F] (x : ToType W) :
@[simp]
theorem CategoryTheory.Limits.limit.w_apply {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] {j j' : J} (f : j j') {F✝ : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F✝ X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F✝] (x : ToType (limit F)) :
@[simp]
theorem CategoryTheory.Limits.cokernel.condition_apply {C : Type u} [Category.{v, u} C] [HasZeroMorphisms C] {X Y : C} (f : X Y) [HasCokernel f] {F : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F] (x : ToType X) :
theorem CategoryTheory.Limits.Cocone.w_apply {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J C} (c : Cocone F) {j j' : J} (f : j j') {F✝ : CCType uF} {carrier : CType w} {instFunLike : (X Y : C) → FunLike (F✝ X Y) (carrier X) (carrier Y)} [inst : ConcreteCategory C F✝] (x : ToType (F.obj j)) :
(ConcreteCategory.hom (c.ι.app j')) ((ConcreteCategory.hom (F.map f)) x) = (c.ι.app j) x