Documentation

Mathlib.CategoryTheory.Functor.Const

The constant functor #

const J : C ā„¤ (J ā„¤ C) is the functor that sends an object X : C to the functor J ā„¤ C sending every object in J to X, and every morphism to šŸ™ X.

When J is nonempty, const is faithful.

We have (const J).obj X ā‹™ F ā‰… (const J).obj (F.obj X) for any F : C ā„¤ D.

The functor sending X : C to the constant functor J ā„¤ C sending everything to X.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Functor.const_obj_obj (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : C) (xāœ : J) :
    ((const J).obj X).obj xāœ = X
    @[simp]
    theorem CategoryTheory.Functor.const_obj_map (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : C) {Xāœ Yāœ : J} (xāœ : Xāœ āŸ¶ Yāœ) :
    ((const J).obj X).map xāœ = CategoryStruct.id X
    @[simp]
    theorem CategoryTheory.Functor.const_map_app (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {Xāœ Yāœ : C} (f : Xāœ āŸ¶ Yāœ) (xāœ : J) :
    ((const J).map f).app xāœ = f

    The constant functor Jįµ’įµ– ā„¤ Cįµ’įµ– sending everything to op X is (naturally isomorphic to) the opposite of the constant functor J ā„¤ C sending everything to X.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Functor.const.opObjOp_hom_app {J : Type uā‚} [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : C) (xāœ : Jįµ’įµ–) :
      (opObjOp X).hom.app xāœ = CategoryStruct.id (((const Jįµ’įµ–).obj (Opposite.op X)).obj xāœ)
      @[simp]
      theorem CategoryTheory.Functor.const.opObjOp_inv_app {J : Type uā‚} [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : C) (xāœ : Jįµ’įµ–) :
      (opObjOp X).inv.app xāœ = CategoryStruct.id (((const J).obj X).op.obj xāœ)

      The constant functor Jįµ’įµ– ā„¤ C sending everything to unop X is (naturally isomorphic to) the opposite of the constant functor J ā„¤ Cįµ’įµ– sending everything to X.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Functor.const.opObjUnop_inv_app {J : Type uā‚} [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : Cįµ’įµ–) (j : Jįµ’įµ–) :
        (opObjUnop X).inv.app j = CategoryStruct.id (((const J).obj X).leftOp.obj j)
        @[simp]
        theorem CategoryTheory.Functor.const.unop_functor_op_obj_map {J : Type uā‚} [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] (X : Cįµ’įµ–) {jā‚ jā‚‚ : J} (f : jā‚ āŸ¶ jā‚‚) :
        def CategoryTheory.Functor.constComp (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (X : C) (F : Functor C D) :
        ((const J).obj X).comp F ā‰… (const J).obj (F.obj X)

        These are actually equal, of course, but not definitionally equal (the equality requires F.map (šŸ™ _) = šŸ™ _). A natural isomorphism is more convenient than an equality between functors (compare id_to_iso).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.constComp_hom_app (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (X : C) (F : Functor C D) (xāœ : J) :
          (constComp J X F).hom.app xāœ = CategoryStruct.id ((((const J).obj X).comp F).obj xāœ)
          @[simp]
          theorem CategoryTheory.Functor.constComp_inv_app (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (X : C) (F : Functor C D) (xāœ : J) :
          (constComp J X F).inv.app xāœ = CategoryStruct.id (((const J).obj (F.obj X)).obj xāœ)

          If J is nonempty, then the constant functor over J is faithful.

          def CategoryTheory.Functor.compConstIso (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (F : Functor C D) :
          F.comp (const J) ā‰… (const J).comp ((whiskeringRight J C D).obj F)

          The canonical isomorphism F ā‹™ Functor.const J ā‰… Functor.const F ā‹™ (whiskeringRight J _ _).obj L.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Functor.compConstIso_hom_app_app (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (F : Functor C D) (X : C) (Xāœ : J) :
            ((compConstIso J F).hom.app X).app Xāœ = CategoryStruct.id (F.obj X)
            @[simp]
            theorem CategoryTheory.Functor.compConstIso_inv_app_app (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (F : Functor C D) (X : C) (Xāœ : J) :
            ((compConstIso J F).inv.app X).app Xāœ = CategoryStruct.id (F.obj X)

            The canonical isomorphism const D ā‹™ (whiskeringLeft J _ _).obj F ā‰… const J.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Functor.constCompWhiskeringLeftIso_inv_app_app (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (F : Functor J D) (X : C) (Xāœ : J) :
              ((constCompWhiskeringLeftIso J F).inv.app X).app Xāœ = CategoryStruct.id X
              @[simp]
              theorem CategoryTheory.Functor.constCompWhiskeringLeftIso_hom_app_app (J : Type uā‚) [Category.{vā‚, uā‚} J] {C : Type uā‚‚} [Category.{vā‚‚, uā‚‚} C] {D : Type uā‚ƒ} [Category.{vā‚ƒ, uā‚ƒ} D] (F : Functor J D) (X : C) (Xāœ : J) :
              ((constCompWhiskeringLeftIso J F).hom.app X).app Xāœ = CategoryStruct.id X