The Dialectica category is symmetric monoidal #
We show that the category Dial
has a symmetric monoidal category structure.
def
CategoryTheory.Dial.tensorObj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
The object X ⊗ Y
in the Dial C
category just tuples the left and right components.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Dial.tensorObj_rel
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
(X.tensorObj Y).rel = (CategoryTheory.Subobject.pullback
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst)).obj
X.rel ⊓ (CategoryTheory.Subobject.pullback
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd)).obj
Y.rel
@[simp]
theorem
CategoryTheory.Dial.tensorObj_tgt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
@[simp]
theorem
CategoryTheory.Dial.tensorObj_src
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
def
CategoryTheory.Dial.tensorHom
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁ X₂ Y₁ Y₂ : CategoryTheory.Dial C}
(f : X₁ ⟶ X₂)
(g : Y₁ ⟶ Y₂)
:
X₁.tensorObj Y₁ ⟶ X₂.tensorObj Y₂
The functorial action of X ⊗ Y
in Dial C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Dial.tensorHom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁ X₂ Y₁ Y₂ : CategoryTheory.Dial C}
(f : X₁ ⟶ X₂)
(g : Y₁ ⟶ Y₂)
:
(CategoryTheory.Dial.tensorHom f g).f = CategoryTheory.Limits.prod.map f.f g.f
@[simp]
theorem
CategoryTheory.Dial.tensorHom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁ X₂ Y₁ Y₂ : CategoryTheory.Dial C}
(f : X₁ ⟶ X₂)
(g : Y₁ ⟶ Y₂)
:
(CategoryTheory.Dial.tensorHom f g).F = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst) f.F)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd) g.F)
def
CategoryTheory.Dial.tensorUnit
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
:
The unit for the tensor X ⊗ Y
in Dial C
.
Instances For
@[simp]
theorem
CategoryTheory.Dial.tensorUnit_tgt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
:
@[simp]
theorem
CategoryTheory.Dial.tensorUnit_src
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
:
@[simp]
theorem
CategoryTheory.Dial.tensorUnit_rel
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
:
def
CategoryTheory.Dial.leftUnitor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
CategoryTheory.Dial.tensorUnit.tensorObj X ≅ X
Left unit cancellation 1 ⊗ X ≅ X
in Dial C
.
Equations
- X.leftUnitor = CategoryTheory.Dial.isoMk (CategoryTheory.Limits.prod.leftUnitor X.src) (CategoryTheory.Limits.prod.leftUnitor X.tgt) ⋯
Instances For
@[simp]
theorem
CategoryTheory.Dial.leftUnitor_inv_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.leftUnitor.inv.f = CategoryTheory.Limits.prod.lift (CategoryTheory.Limits.terminal.from X.src) (CategoryTheory.CategoryStruct.id X.src)
@[simp]
theorem
CategoryTheory.Dial.leftUnitor_inv_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.leftUnitor.inv.F = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd
@[simp]
theorem
CategoryTheory.Dial.leftUnitor_hom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.leftUnitor.hom.f = CategoryTheory.Limits.prod.snd
@[simp]
theorem
CategoryTheory.Dial.leftUnitor_hom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.leftUnitor.hom.F = CategoryTheory.Limits.prod.lift (CategoryTheory.Limits.terminal.from (((⊤_ C) ⨯ X.src) ⨯ X.tgt))
CategoryTheory.Limits.prod.snd
def
CategoryTheory.Dial.rightUnitor
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.tensorObj CategoryTheory.Dial.tensorUnit ≅ X
Right unit cancellation X ⊗ 1 ≅ X
in Dial C
.
Equations
- X.rightUnitor = CategoryTheory.Dial.isoMk (CategoryTheory.Limits.prod.rightUnitor X.src) (CategoryTheory.Limits.prod.rightUnitor X.tgt) ⋯
Instances For
@[simp]
theorem
CategoryTheory.Dial.rightUnitor_hom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.rightUnitor.hom.F = CategoryTheory.Limits.prod.lift CategoryTheory.Limits.prod.snd
(CategoryTheory.Limits.terminal.from ((X.src ⨯ ⊤_ C) ⨯ X.tgt))
@[simp]
theorem
CategoryTheory.Dial.rightUnitor_hom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.rightUnitor.hom.f = CategoryTheory.Limits.prod.fst
@[simp]
theorem
CategoryTheory.Dial.rightUnitor_inv_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.rightUnitor.inv.F = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst
@[simp]
theorem
CategoryTheory.Dial.rightUnitor_inv_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
X.rightUnitor.inv.f = CategoryTheory.Limits.prod.lift (CategoryTheory.CategoryStruct.id X.src) (CategoryTheory.Limits.terminal.from X.src)
def
CategoryTheory.Dial.associator
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(X.tensorObj Y).tensorObj Z ≅ X.tensorObj (Y.tensorObj Z)
The associator for tensor, (X ⊗ Y) ⊗ Z ≅ X ⊗ (Y ⊗ Z)
in Dial C
.
Equations
- X.associator Y Z = CategoryTheory.Dial.isoMk (CategoryTheory.Limits.prod.associator X.src Y.src Z.src) (CategoryTheory.Limits.prod.associator X.tgt Y.tgt Z.tgt) ⋯
Instances For
@[simp]
theorem
CategoryTheory.Dial.associator_hom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(X.associator Y Z).hom.F = CategoryTheory.Limits.prod.lift
(CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst)
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst)))
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd))
@[simp]
theorem
CategoryTheory.Dial.associator_inv_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(X.associator Y Z).inv.F = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst))
(CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.snd))
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd))
@[simp]
theorem
CategoryTheory.Dial.associator_inv_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(X.associator Y Z).inv.f = CategoryTheory.Limits.prod.lift
(CategoryTheory.Limits.prod.lift CategoryTheory.Limits.prod.fst
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst))
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd)
@[simp]
theorem
CategoryTheory.Dial.associator_hom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(X.associator Y Z).hom.f = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst)
(CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.snd)
CategoryTheory.Limits.prod.snd)
instance
CategoryTheory.Dial.instMonoidalCategoryStruct
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
:
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_rightUnitor_hom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.rightUnitor X).hom.f = CategoryTheory.Limits.prod.fst
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_tensorUnit_tgt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
:
(𝟙_ (CategoryTheory.Dial C)).tgt = ⊤_ C
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_leftUnitor_inv_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.leftUnitor X).inv.F = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_rightUnitor_hom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.rightUnitor X).hom.F = CategoryTheory.Limits.prod.lift CategoryTheory.Limits.prod.snd
(CategoryTheory.Limits.terminal.from ((X.src ⨯ ⊤_ C) ⨯ X.tgt))
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_associator_hom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.associator X Y Z).hom.f = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst)
(CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.snd)
CategoryTheory.Limits.prod.snd)
@[simp]
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_leftUnitor_hom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.leftUnitor X).hom.f = CategoryTheory.Limits.prod.snd
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_whiskerRight_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁✝ X₂✝ : CategoryTheory.Dial C}
(f : X₁✝ ⟶ X₂✝)
(Y : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.whiskerRight f Y).F = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst) f.F)
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd)
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_tensorObj_tgt
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.tensorObj X Y).tgt = (X.tgt ⨯ Y.tgt)
@[simp]
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_tensorHom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁✝ Y₁✝ X₂✝ Y₂✝ : CategoryTheory.Dial C}
(f : X₁✝ ⟶ Y₁✝)
(g : X₂✝ ⟶ Y₂✝)
:
(CategoryTheory.MonoidalCategory.tensorHom f g).F = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst) f.F)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd) g.F)
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_whiskerLeft_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X x✝ x✝¹ : CategoryTheory.Dial C)
(f : x✝ ⟶ x✝¹)
:
(CategoryTheory.MonoidalCategory.whiskerLeft X f).F = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd) f.F)
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_tensorUnit_src
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
:
(𝟙_ (CategoryTheory.Dial C)).src = ⊤_ C
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_associator_inv_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.associator X Y Z).inv.F = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst))
(CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.snd))
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd))
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_leftUnitor_hom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.leftUnitor X).hom.F = CategoryTheory.Limits.prod.lift (CategoryTheory.Limits.terminal.from (((⊤_ C) ⨯ X.src) ⨯ X.tgt))
CategoryTheory.Limits.prod.snd
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_tensorUnit_rel
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
:
(𝟙_ (CategoryTheory.Dial C)).rel = ⊤
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_tensorObj_src
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.tensorObj X Y).src = (X.src ⨯ Y.src)
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_associator_hom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.associator X Y Z).hom.F = CategoryTheory.Limits.prod.lift
(CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst)
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst)))
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd))
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_whiskerLeft_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X x✝ x✝¹ : CategoryTheory.Dial C)
(f : x✝ ⟶ x✝¹)
:
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_tensorObj_rel
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.tensorObj X Y).rel = (CategoryTheory.Subobject.pullback
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst)).obj
X.rel ⊓ (CategoryTheory.Subobject.pullback
(CategoryTheory.Limits.prod.map CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd)).obj
Y.rel
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_associator_inv_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.associator X Y Z).inv.f = CategoryTheory.Limits.prod.lift
(CategoryTheory.Limits.prod.lift CategoryTheory.Limits.prod.fst
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst))
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd)
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_whiskerRight_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁✝ X₂✝ : CategoryTheory.Dial C}
(f : X₁✝ ⟶ X₂✝)
(Y : CategoryTheory.Dial C)
:
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_tensorHom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁✝ Y₁✝ X₂✝ Y₂✝ : CategoryTheory.Dial C}
(f : X₁✝ ⟶ Y₁✝)
(g : X₂✝ ⟶ Y₂✝)
:
(CategoryTheory.MonoidalCategory.tensorHom f g).f = CategoryTheory.Limits.prod.map f.f g.f
@[simp]
theorem
CategoryTheory.Dial.instMonoidalCategoryStruct_rightUnitor_inv_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
:
(CategoryTheory.MonoidalCategory.rightUnitor X).inv.F = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst
theorem
CategoryTheory.Dial.tensor_id
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X₁ X₂ : CategoryTheory.Dial C)
:
theorem
CategoryTheory.Dial.tensor_comp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁ Y₁ Z₁ X₂ Y₂ Z₂ : CategoryTheory.Dial C}
(f₁ : X₁ ⟶ Y₁)
(f₂ : X₂ ⟶ Y₂)
(g₁ : Y₁ ⟶ Z₁)
(g₂ : Y₂ ⟶ Z₂)
:
theorem
CategoryTheory.Dial.associator_naturality
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X₁ X₂ X₃ Y₁ Y₂ Y₃ : CategoryTheory.Dial C}
(f₁ : X₁ ⟶ Y₁)
(f₂ : X₂ ⟶ Y₂)
(f₃ : X₃ ⟶ Y₃)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.Dial.tensorHom (CategoryTheory.Dial.tensorHom f₁ f₂) f₃)
(Y₁.associator Y₂ Y₃).hom = CategoryTheory.CategoryStruct.comp (X₁.associator X₂ X₃).hom
(CategoryTheory.Dial.tensorHom f₁ (CategoryTheory.Dial.tensorHom f₂ f₃))
theorem
CategoryTheory.Dial.leftUnitor_naturality
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X Y : CategoryTheory.Dial C}
(f : X ⟶ Y)
:
theorem
CategoryTheory.Dial.rightUnitor_naturality
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X Y : CategoryTheory.Dial C}
(f : X ⟶ Y)
:
theorem
CategoryTheory.Dial.pentagon
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(W X Y Z : CategoryTheory.Dial C)
:
CategoryTheory.CategoryStruct.comp
(CategoryTheory.Dial.tensorHom (W.associator X Y).hom (CategoryTheory.CategoryStruct.id Z))
(CategoryTheory.CategoryStruct.comp (W.associator (X.tensorObj Y) Z).hom
(CategoryTheory.Dial.tensorHom (CategoryTheory.CategoryStruct.id W) (X.associator Y Z).hom)) = CategoryTheory.CategoryStruct.comp ((W.tensorObj X).associator Y Z).hom (W.associator X (Y.tensorObj Z)).hom
theorem
CategoryTheory.Dial.triangle
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
CategoryTheory.CategoryStruct.comp (X.associator (𝟙_ (CategoryTheory.Dial C)) Y).hom
(CategoryTheory.Dial.tensorHom (CategoryTheory.CategoryStruct.id X) Y.leftUnitor.hom) = CategoryTheory.Dial.tensorHom X.rightUnitor.hom (CategoryTheory.CategoryStruct.id Y)
instance
CategoryTheory.Dial.instMonoidalCategory
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
:
Equations
- CategoryTheory.Dial.instMonoidalCategory = CategoryTheory.MonoidalCategory.ofTensorHom ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
def
CategoryTheory.Dial.braiding
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
X.tensorObj Y ≅ Y.tensorObj X
The braiding isomorphism X ⊗ Y ≅ Y ⊗ X
in Dial C
.
Equations
- X.braiding Y = CategoryTheory.Dial.isoMk (CategoryTheory.Limits.prod.braiding X.src Y.src) (CategoryTheory.Limits.prod.braiding X.tgt Y.tgt) ⋯
Instances For
@[simp]
theorem
CategoryTheory.Dial.braiding_inv_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
(X.braiding Y).inv.F = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd)
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst)
@[simp]
theorem
CategoryTheory.Dial.braiding_inv_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
(X.braiding Y).inv.f = CategoryTheory.Limits.prod.lift CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst
@[simp]
theorem
CategoryTheory.Dial.braiding_hom_F
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
(X.braiding Y).hom.F = CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd)
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst)
@[simp]
theorem
CategoryTheory.Dial.braiding_hom_f
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
(X.braiding Y).hom.f = CategoryTheory.Limits.prod.lift CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst
theorem
CategoryTheory.Dial.symmetry
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y : CategoryTheory.Dial C)
:
CategoryTheory.CategoryStruct.comp (X.braiding Y).hom (Y.braiding X).hom = CategoryTheory.CategoryStruct.id (X.tensorObj Y)
theorem
CategoryTheory.Dial.braiding_naturality_right
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X : CategoryTheory.Dial C)
{Y Z : CategoryTheory.Dial C}
(f : Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.Dial.tensorHom (CategoryTheory.CategoryStruct.id X) f)
(X.braiding Z).hom = CategoryTheory.CategoryStruct.comp (X.braiding Y).hom
(CategoryTheory.Dial.tensorHom f (CategoryTheory.CategoryStruct.id X))
theorem
CategoryTheory.Dial.braiding_naturality_left
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
{X Y : CategoryTheory.Dial C}
(f : X ⟶ Y)
(Z : CategoryTheory.Dial C)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.Dial.tensorHom f (CategoryTheory.CategoryStruct.id Z))
(Y.braiding Z).hom = CategoryTheory.CategoryStruct.comp (X.braiding Z).hom
(CategoryTheory.Dial.tensorHom (CategoryTheory.CategoryStruct.id Z) f)
theorem
CategoryTheory.Dial.hexagon_forward
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
CategoryTheory.CategoryStruct.comp (X.associator Y Z).hom
(CategoryTheory.CategoryStruct.comp (X.braiding (CategoryTheory.MonoidalCategory.tensorObj Y Z)).hom
(Y.associator Z X).hom) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Dial.tensorHom (X.braiding Y).hom (CategoryTheory.CategoryStruct.id Z))
(CategoryTheory.CategoryStruct.comp (Y.associator X Z).hom
(CategoryTheory.Dial.tensorHom (CategoryTheory.CategoryStruct.id Y) (X.braiding Z).hom))
theorem
CategoryTheory.Dial.hexagon_reverse
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(X Y Z : CategoryTheory.Dial C)
:
CategoryTheory.CategoryStruct.comp (X.associator Y Z).inv
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalCategory.tensorObj X Y).braiding Z).hom
(Z.associator X Y).inv) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Dial.tensorHom (CategoryTheory.CategoryStruct.id X) (Y.braiding Z).hom)
(CategoryTheory.CategoryStruct.comp (X.associator Z Y).inv
(CategoryTheory.Dial.tensorHom (X.braiding Z).hom (CategoryTheory.CategoryStruct.id Y)))
instance
CategoryTheory.Dial.instSymmetricCategory
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasFiniteProducts C]
[CategoryTheory.Limits.HasPullbacks C]
:
Equations
- CategoryTheory.Dial.instSymmetricCategory = CategoryTheory.SymmetricCategory.mk ⋯