Documentation

Mathlib.CategoryTheory.DinatTrans

Dinatural transformations #

Dinatural transformations are special kinds of transformations between functors F G : Cᵒᵖ ⥤ C ⥤ D which depend both covariantly and contravariantly on the same category (also known as difunctors).

A dinatural transformation is a family of morphisms given only on the diagonal of the two functors, and is such that a certain naturality hexagon commutes. Note that dinatural transformations cannot be composed with each other (since the outer hexagon does not commute in general), but can still be "pre/post-composed" with ordinary natural transformations.

References #

structure CategoryTheory.DinatTrans {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F G : Functor Cᵒᵖ (Functor C D)) :
Type (max u₁ v₂)

Dinatural transformations between two difunctors.

Instances For
    @[simp]
    theorem CategoryTheory.DinatTrans.dinaturality_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor Cᵒᵖ (Functor C D)} (self : DinatTrans F G) {X Y : C} (f : X Y) {Z : D} (h : (G.obj (Opposite.op X)).obj Y Z) :

    Notation for dinatural transformations.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.DinatTrans.compNatTrans {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G H : Functor Cᵒᵖ (Functor C D)} (δ : DinatTrans F G) (α : G H) :

      Post-composition with a natural transformation.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.DinatTrans.compNatTrans_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G H : Functor Cᵒᵖ (Functor C D)} (δ : DinatTrans F G) (α : G H) (X : C) :
        (δ.compNatTrans α).app X = CategoryStruct.comp (δ.app X) ((α.app (Opposite.op X)).app X)

        Pre-composition with a natural transformation.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.DinatTrans.precompNatTrans_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G H : Functor Cᵒᵖ (Functor C D)} (δ : DinatTrans G H) (α : F G) (X : C) :