Documentation

Mathlib.CategoryTheory.Endomorphism

Endomorphisms #

Definition and basic properties of endomorphisms and automorphisms of an object in a category.

For each X : C, we provide CategoryTheory.End X := X ⟶ X with a monoid structure, and CategoryTheory.Aut X := X ≅ X with a group structure.

Endomorphisms of an object in a category. Arguments order in multiplication agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

Equations
Instances For
    instance CategoryTheory.End.mul {C : Type u} [CategoryStruct.{v, u} C] (X : C) :
    Mul (End X)

    Multiplication of endomorphisms agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

    Equations
    def CategoryTheory.End.of {C : Type u} [CategoryStruct.{v, u} C] {X : C} (f : X X) :
    End X

    Assist the typechecker by expressing a morphism X ⟶ X as a term of CategoryTheory.End X.

    Equations
    Instances For
      def CategoryTheory.End.asHom {C : Type u} [CategoryStruct.{v, u} C] {X : C} (f : End X) :
      X X

      Assist the typechecker by expressing an endomorphism f : CategoryTheory.End X as a term of X ⟶ X.

      Equations
      • f.asHom = f
      Instances For
        @[simp]
        theorem CategoryTheory.End.mul_def {C : Type u} [CategoryStruct.{v, u} C] {X : C} (xs ys : End X) :
        xs * ys = CategoryStruct.comp ys xs
        instance CategoryTheory.End.monoid {C : Type u} [Category.{v, u} C] {X : C} :

        Endomorphisms of an object form a monoid

        Equations
        theorem CategoryTheory.End.smul_right {C : Type u} [Category.{v, u} C] {X Y : C} {r : End Y} {f : X Y} :
        instance CategoryTheory.End.group {C : Type u} [Groupoid C] (X : C) :

        In a groupoid, endomorphisms form a group

        Equations
        def CategoryTheory.Aut {C : Type u} [Category.{v, u} C] (X : C) :

        Automorphisms of an object in a category.

        The order of arguments in multiplication agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

        Equations
        Instances For
          theorem CategoryTheory.Aut.ext {C : Type u} [Category.{v, u} C] {X : C} {φ₁ φ₂ : Aut X} (h : φ₁.hom = φ₂.hom) :
          φ₁ = φ₂
          theorem CategoryTheory.Aut.Aut_mul_def {C : Type u} [Category.{v, u} C] (X : C) (f g : Aut X) :
          f * g = g ≪≫ f

          Units in the monoid of endomorphisms of an object are (multiplicatively) equivalent to automorphisms of that object.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The inclusion of Aut X to End X as a monoid homomorphism.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Aut.toEnd_apply {C : Type u} [Category.{v, u} C] (X : C) (a✝ : Aut X) :
              (toEnd X) a✝ = ((unitsEndEquivAut X).symm a✝)
              def CategoryTheory.Aut.autMulEquivOfIso {C : Type u} [Category.{v, u} C] {X Y : C} (h : X Y) :

              Isomorphisms induce isomorphisms of the automorphism group

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def CategoryTheory.Functor.mapEnd {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) :
                End X →* End (f.obj X)

                f.map as a monoid hom between endomorphism monoids.

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Functor.mapEnd_apply {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) (a✝ : X X) :
                  (mapEnd X f) a✝ = f.map a✝
                  def CategoryTheory.Functor.mapAut {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) :
                  Aut X →* Aut (f.obj X)

                  f.mapIso as a group hom between automorphism groups.

                  Equations
                  Instances For
                    noncomputable def CategoryTheory.Functor.FullyFaithful.mulEquivEnd {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) :
                    End X ≃* End (f.obj X)

                    mulEquivEnd as an isomorphism between endomorphism monoids.

                    Equations
                    • hf.mulEquivEnd X = { toEquiv := hf.homEquiv, map_mul' := }
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Functor.FullyFaithful.mulEquivEnd_apply {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (a✝ : X X) :
                      (hf.mulEquivEnd X) a✝ = f.map a✝
                      @[simp]
                      theorem CategoryTheory.Functor.FullyFaithful.mulEquivEnd_symm_apply {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (f✝ : f.obj X f.obj X) :
                      (hf.mulEquivEnd X).symm f✝ = hf.preimage f✝
                      noncomputable def CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) :
                      Aut X ≃* Aut (f.obj X)

                      mulEquivAut as an isomorphism between automorphism groups.

                      Equations
                      • hf.autMulEquivOfFullyFaithful X = { toEquiv := hf.isoEquiv, map_mul' := }
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_inv {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (e : f.obj X f.obj X) :
                        ((hf.autMulEquivOfFullyFaithful X).symm e).inv = hf.preimage e.inv
                        @[simp]
                        theorem CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_apply_inv {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (i : X X) :
                        ((hf.autMulEquivOfFullyFaithful X) i).inv = f.map i.inv
                        @[simp]
                        theorem CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_apply_hom {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (i : X X) :
                        ((hf.autMulEquivOfFullyFaithful X) i).hom = f.map i.hom
                        @[simp]
                        theorem CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_hom {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (e : f.obj X f.obj X) :
                        ((hf.autMulEquivOfFullyFaithful X).symm e).hom = hf.preimage e.hom