The bicategory of V
-enriched categories #
We define the bicategory EnrichedCat V
of (bundled) V
-enriched categories for a fixed monoidal
category V
.
Future work #
- Define change of base and
ForgetEnrichment
as 2-functors. - Define the bicategory of enriched ordinary categories.
def
CategoryTheory.EnrichedCat
(V : Type v)
[Category.{w, v} V]
[MonoidalCategory V]
:
Type (max (u + 1) (max u v) w)
Category of V
-enriched categories for a monoidal category V
.
Instances For
instance
CategoryTheory.EnrichedCat.instCoeSortType
(V : Type v)
[Category.{w, v} V]
[MonoidalCategory V]
:
CoeSort (EnrichedCat V) (Type u)
Equations
instance
CategoryTheory.EnrichedCat.str
(V : Type v)
[Category.{w, v} V]
[MonoidalCategory V]
(C : EnrichedCat V)
:
EnrichedCategory V ↑C
Equations
def
CategoryTheory.EnrichedCat.of
(V : Type v)
[Category.{w, v} V]
[MonoidalCategory V]
(C : Type u)
[EnrichedCategory V C]
:
Construct a bundled EnrichedCat
from the underlying type and the typeclass.
Equations
Instances For
def
CategoryTheory.EnrichedCat.whiskerLeft
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
(F : EnrichedFunctor V C D)
{G H : EnrichedFunctor V D E}
(α : G ⟶ H)
:
Whisker a V
-enriched natural transformation on the left.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.EnrichedCat.whiskerLeft_out_app
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
(F : EnrichedFunctor V C D)
{G H : EnrichedFunctor V D E}
(α : G ⟶ H)
(X : ForgetEnrichment V C)
:
def
CategoryTheory.EnrichedCat.whiskerRight
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
{F G : EnrichedFunctor V C D}
(α : F ⟶ G)
(H : EnrichedFunctor V D E)
:
Whisker a V
-enriched natural transformation on the right.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.EnrichedCat.whiskerRight_out_app
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
{F G : EnrichedFunctor V C D}
(α : F ⟶ G)
(H : EnrichedFunctor V D E)
(X : ForgetEnrichment V C)
:
(whiskerRight α H).out.app X = ForgetEnrichment.homOf V
(CategoryStruct.comp (ForgetEnrichment.homTo V (α.out.app X))
(H.map (F.obj (ForgetEnrichment.to V X)) (G.obj (ForgetEnrichment.to V X))))
def
CategoryTheory.EnrichedCat.leftUnitor
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
(F : EnrichedFunctor V C D)
:
Composing the V
-enriched identity functor with any functor is isomorphic to that functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.EnrichedCat.leftUnitor_inv_out_app
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
(F : EnrichedFunctor V C D)
(X : ForgetEnrichment V C)
:
(leftUnitor F).inv.out.app X = CategoryStruct.id (ForgetEnrichment.of V (F.obj (ForgetEnrichment.to V X)))
@[simp]
theorem
CategoryTheory.EnrichedCat.leftUnitor_hom_out_app
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
(F : EnrichedFunctor V C D)
(X : ForgetEnrichment V C)
:
(leftUnitor F).hom.out.app X = CategoryStruct.id (ForgetEnrichment.of V (F.obj (ForgetEnrichment.to V X)))
def
CategoryTheory.EnrichedCat.rightUnitor
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
(F : EnrichedFunctor V C D)
:
Composing any V
-enriched functor with the identity functor is isomorphic to the former
functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.EnrichedCat.rightUnitor_inv_out_app
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
(F : EnrichedFunctor V C D)
(X : ForgetEnrichment V C)
:
(rightUnitor F).inv.out.app X = CategoryStruct.id (ForgetEnrichment.of V (F.obj (ForgetEnrichment.to V X)))
@[simp]
theorem
CategoryTheory.EnrichedCat.rightUnitor_hom_out_app
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
(F : EnrichedFunctor V C D)
(X : ForgetEnrichment V C)
:
(rightUnitor F).hom.out.app X = CategoryStruct.id (ForgetEnrichment.of V (F.obj (ForgetEnrichment.to V X)))
def
CategoryTheory.EnrichedCat.associator
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
{E' : Type u₃}
[EnrichedCategory V E']
(F : EnrichedFunctor V C D)
(G : EnrichedFunctor V D E)
(H : EnrichedFunctor V E E')
:
EnrichedFunctor.comp V (EnrichedFunctor.comp V F G) H ≅ EnrichedFunctor.comp V F (EnrichedFunctor.comp V G H)
Composition of V
-enriched functors is associative up to isomorphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.EnrichedCat.associator_hom_out_app
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
{E' : Type u₃}
[EnrichedCategory V E']
(F : EnrichedFunctor V C D)
(G : EnrichedFunctor V D E)
(H : EnrichedFunctor V E E')
(X : ForgetEnrichment V C)
:
(associator F G H).hom.out.app X = CategoryStruct.id (ForgetEnrichment.of V (H.obj (G.obj (F.obj (ForgetEnrichment.to V X)))))
@[simp]
theorem
CategoryTheory.EnrichedCat.associator_inv_out_app
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
{E' : Type u₃}
[EnrichedCategory V E']
(F : EnrichedFunctor V C D)
(G : EnrichedFunctor V D E)
(H : EnrichedFunctor V E E')
(X : ForgetEnrichment V C)
:
(associator F G H).inv.out.app X = CategoryStruct.id (ForgetEnrichment.of V (H.obj (G.obj (F.obj (ForgetEnrichment.to V X)))))
theorem
CategoryTheory.EnrichedCat.comp_whiskerRight
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
{F G H : EnrichedFunctor V C D}
(α : F ⟶ G)
(β : G ⟶ H)
(I : EnrichedFunctor V D E)
:
whiskerRight { out := CategoryStruct.comp α.out β.out } I = CategoryStruct.comp (whiskerRight α I) (whiskerRight β I)
theorem
CategoryTheory.EnrichedCat.whisker_exchange
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
{C : Type u}
[EnrichedCategory V C]
{D : Type u₁}
[EnrichedCategory V D]
{E : Type u₂}
[EnrichedCategory V E]
{F G : EnrichedFunctor V C D}
{H I : EnrichedFunctor V D E}
(α : F ⟶ G)
(β : H ⟶ I)
:
CategoryStruct.comp (whiskerLeft F β) (whiskerRight α I) = CategoryStruct.comp (whiskerRight α H) (whiskerLeft G β)
instance
CategoryTheory.EnrichedCat.bicategory
{V : Type v}
[Category.{w, v} V]
[MonoidalCategory V]
:
The bicategory structure on EnrichedCat V
for a monoidal category V
.
Equations
- One or more equations did not get rendered due to their size.