Documentation

Mathlib.CategoryTheory.Functor.Functorial

Unbundled functors, as a typeclass decorating the object-level function. #

class CategoryTheory.Functorial {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : CD) :
Type (max v₁ v₂ u₁ u₂)

An unbundled functor.

Instances
    def CategoryTheory.map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : CD) [Functorial F] {X Y : C} (f : X Y) :
    F X F Y

    If F : C → D (just a function) has [Functorial F], we can write map F f : F X ⟶ F Y for the action of F on a morphism f : X ⟶ Y.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.map'_as_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : CD} [Functorial F] {X Y : C} {f : X Y} :
      @[simp]
      @[simp]
      theorem CategoryTheory.Functorial.map_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : CD} [Functorial F] {X Y Z : C} {f : X Y} {g : Y Z} :
      def CategoryTheory.Functor.of {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : CD) [I : Functorial F] :

      Bundle a functorial function as a functor.

      Equations
      Instances For
        Equations
        @[simp]
        theorem CategoryTheory.map_functorial_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (f : X Y) :
        map F.obj f = F.map f
        Equations
        def CategoryTheory.functorial_comp {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (F : CD) [Functorial F] (G : DE) [Functorial G] :

        G ∘ F is a functorial if both F and G are.

        Equations
        Instances For