Documentation

Mathlib.CategoryTheory.Functor.OfSequence

Functors from the category of the ordered set #

In this file, we provide a constructor Functor.ofSequence for functors ℕ ⥤ C which takes as an input a sequence of morphisms f : X n ⟶ X (n + 1) for all n : ℕ.

We also provide a constructor NatTrans.ofSequence for natural transformations between functors ℕ ⥤ C which allows to check the naturality condition only for morphisms n ⟶ n + 1.

The duals of the above for functors ℕᵒᵖ ⥤ C are given by Functor.ofOpSequence and NatTrans.ofOpSequence.

theorem CategoryTheory.Functor.OfSequence.congr_f {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) (i j : ) (h : i = j) :
def CategoryTheory.Functor.OfSequence.map {C : Type u_1} [Category.{u_2, u_1} C] {X : C} :
((n : ) → X n X (n + 1))(i j : ) → i j(X i X j)

The morphism X i ⟶ X j obtained by composing morphisms of the form X n ⟶ X (n + 1) when i ≤ j.

Equations
Instances For
    theorem CategoryTheory.Functor.OfSequence.map_id {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) (i : ) :
    map f i i = CategoryStruct.id (X i)
    theorem CategoryTheory.Functor.OfSequence.map_le_succ {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) (i : ) :
    map f i (i + 1) = f i
    theorem CategoryTheory.Functor.OfSequence.map_comp {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) (i j k : ) (hij : i j) (hjk : j k) :
    map f i k = CategoryStruct.comp (map f i j hij) (map f j k hjk)
    theorem CategoryTheory.Functor.OfSequence.map_comp_assoc {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) (i j k : ) (hij : i j) (hjk : j k) {Z : C} (h : X k Z) :
    CategoryStruct.comp (map f i k ) h = CategoryStruct.comp (map f i j hij) (CategoryStruct.comp (map f j k hjk) h)
    def CategoryTheory.Functor.ofSequence {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) :

    The functor ℕ ⥤ C constructed from a sequence of morphisms f : X n ⟶ X (n + 1) for all n : ℕ.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Functor.ofSequence_obj {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) (a✝ : ) :
      (ofSequence f).obj a✝ = X a✝
      @[simp]
      theorem CategoryTheory.Functor.ofSequence_map_homOfLE_succ {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X n X (n + 1)) (n : ) :
      (ofSequence f).map (homOfLE ) = f n
      def CategoryTheory.NatTrans.ofSequence {C : Type u_1} [Category.{u_2, u_1} C] {F G : Functor C} (app : (n : ) → F.obj n G.obj n) (naturality : ∀ (n : ), CategoryStruct.comp (F.map (homOfLE )) (app (n + 1)) = CategoryStruct.comp (app n) (G.map (homOfLE ))) :
      F G

      Constructor for natural transformations F ⟶ G in ℕ ⥤ C which takes as inputs the morphisms F.obj n ⟶ G.obj n for all n : ℕ and the naturality condition only for morphisms of the form n ⟶ n + 1.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.NatTrans.ofSequence_app {C : Type u_1} [Category.{u_2, u_1} C] {F G : Functor C} (app : (n : ) → F.obj n G.obj n) (naturality : ∀ (n : ), CategoryStruct.comp (F.map (homOfLE )) (app (n + 1)) = CategoryStruct.comp (app n) (G.map (homOfLE ))) (n : ) :
        (ofSequence app naturality).app n = app n
        def CategoryTheory.Functor.ofOpSequence {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X (n + 1) X n) :

        The functor ℕᵒᵖ ⥤ C constructed from a sequence of morphisms f : X (n + 1) ⟶ X n for all n : ℕ.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.ofOpSequence_obj {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X (n + 1) X n) (X✝ : ᵒᵖ) :
          (ofOpSequence f).obj X✝ = X (Opposite.unop X✝)
          @[simp]
          theorem CategoryTheory.Functor.ofOpSequence_map_homOfLE_succ {C : Type u_1} [Category.{u_2, u_1} C] {X : C} (f : (n : ) → X (n + 1) X n) (n : ) :
          (ofOpSequence f).map (homOfLE ).op = f n
          def CategoryTheory.NatTrans.ofOpSequence {C : Type u_1} [Category.{u_2, u_1} C] {F G : Functor ᵒᵖ C} (app : (n : ) → F.obj (Opposite.op n) G.obj (Opposite.op n)) (naturality : ∀ (n : ), CategoryStruct.comp (F.map (homOfLE ).op) (app n) = CategoryStruct.comp (app (n + 1)) (G.map (homOfLE ).op)) :
          F G

          Constructor for natural transformations F ⟶ G in ℕᵒᵖ ⥤ C which takes as inputs the morphisms F.obj ⟨n⟩ ⟶ G.obj ⟨n⟩ for all n : ℕ and the naturality condition only for morphisms of the form n ⟶ n + 1.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.NatTrans.ofOpSequence_app {C : Type u_1} [Category.{u_2, u_1} C] {F G : Functor ᵒᵖ C} (app : (n : ) → F.obj (Opposite.op n) G.obj (Opposite.op n)) (naturality : ∀ (n : ), CategoryStruct.comp (F.map (homOfLE ).op) (app n) = CategoryStruct.comp (app (n + 1)) (G.map (homOfLE ).op)) (n : ᵒᵖ) :
            (ofOpSequence app naturality).app n = app (Opposite.unop n)