The coproduct of a separating family of objects is separating #
If a family of objects S : ι → C
in a category with zero morphisms
is separating, then the coproduct of S
is a separator in C
.
theorem
CategoryTheory.IsSeparating.isSeparator_of_isColimit_cofan
{C : Type u}
[Category.{v, u} C]
[Limits.HasZeroMorphisms C]
{ι : Type w}
{S : ι → C}
(hS : IsSeparating (Set.range S))
{c : Limits.Cofan S}
(hc : Limits.IsColimit c)
:
IsSeparator c.pt
theorem
CategoryTheory.IsSeparating.isSeparator_coproduct
{C : Type u}
[Category.{v, u} C]
[Limits.HasZeroMorphisms C]
{ι : Type w}
{S : ι → C}
(hS : IsSeparating (Set.range S))
[Limits.HasCoproduct S]
:
IsSeparator (∐ S)