Documentation

Mathlib.CategoryTheory.GradedObject.Single

The graded object in a single degree #

In this file, we define the functor GradedObject.single j : C ⥤ GradedObject J C which sends an object X : C to the graded object which is X in degree j and the initial object of C in other degrees.

noncomputable def CategoryTheory.GradedObject.single {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) :

The functor which sends X : C to the graded object which is X in degree j and the initial object in other degrees.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible, inline]

    The functor which sends X : C to the graded object which is X in degree 0 and the initial object in nonzero degrees.

    Equations
    Instances For
      noncomputable def CategoryTheory.GradedObject.singleObjApplyIsoOfEq {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) (X : C) (i : J) (h : i = j) :
      (single j).obj X i X

      The canonical isomorphism (single j).obj X i ≅ X when i = j.

      Equations
      Instances For
        @[reducible, inline]
        noncomputable abbrev CategoryTheory.GradedObject.singleObjApplyIso {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) (X : C) :
        (single j).obj X j X

        The canonical isomorphism (single j).obj X j ≅ X.

        Equations
        Instances For
          noncomputable def CategoryTheory.GradedObject.isInitialSingleObjApply {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) (X : C) (i : J) (h : i j) :
          Limits.IsInitial ((single j).obj X i)

          The object (single j).obj X i is initial when i ≠ j.

          Equations
          Instances For
            theorem CategoryTheory.GradedObject.singleObjApplyIsoOfEq_inv_single_map {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) {X Y : C} (f : X Y) (i : J) (h : i = j) :
            theorem CategoryTheory.GradedObject.single_map_singleObjApplyIsoOfEq_hom {J : Type u_1} {C : Type u_2} [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) {X Y : C} (f : X Y) (i : J) (h : i = j) :
            noncomputable def CategoryTheory.GradedObject.singleCompEval {J : Type u_1} (C : Type u_2) [Category.{u_3, u_2} C] [Limits.HasInitial C] [DecidableEq J] (j : J) :
            (single j).comp (eval j) Functor.id C

            The composition of the single functor single j : C ⥤ GradedObject J C and the evaluation functor eval j identifies to the identity functor.

            Equations
            Instances For
              @[simp]
              @[simp]