Vertex group #
This file defines the vertex group (aka isotropy group) of a groupoid at a vertex.
Implementation notes #
- The instance is defined "manually", instead of relying on
CategoryTheory.Aut.group
or usingCategoryTheory.inv
. - The multiplication order therefore matches the categorical one:
x * y = x ≫ y
. - The inverse is directly defined in terms of the groupoidal inverse:
x ⁻¹ = Groupoid.inv x
.
Tags #
isotropy, vertex group, groupoid
The vertex group at c
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Groupoid.vertexGroup_one
{C : Type u}
[Groupoid C]
(c : C)
:
Eq 1 (CategoryStruct.id c)
theorem
CategoryTheory.Groupoid.vertexGroup_mul
{C : Type u}
[Groupoid C]
(c : C)
(x y : Quiver.Hom c c)
:
Eq (HMul.hMul x y) (CategoryStruct.comp x y)
theorem
CategoryTheory.Groupoid.vertexGroup_inv
{C : Type u}
[Groupoid C]
(c : C)
(a✝ : Quiver.Hom c c)
:
theorem
CategoryTheory.Groupoid.vertexGroup.inv_eq_inv
{C : Type u}
[Groupoid C]
(c : C)
(γ : Quiver.Hom c c)
:
Eq (Inv.inv γ) (CategoryTheory.inv γ)
The inverse in the group is equal to the inverse given by CategoryTheory.inv
.
def
CategoryTheory.Groupoid.vertexGroupIsomOfMap
{C : Type u}
[Groupoid C]
{c d : C}
(f : Quiver.Hom c d)
:
MulEquiv (Quiver.Hom c c) (Quiver.Hom d d)
An arrow in the groupoid defines, by conjugation, an isomorphism of groups between its endpoints.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Groupoid.vertexGroupIsomOfMap_apply
{C : Type u}
[Groupoid C]
{c d : C}
(f : Quiver.Hom c d)
(γ : Quiver.Hom c c)
:
Eq (DFunLike.coe (vertexGroupIsomOfMap f) γ) (CategoryStruct.comp (inv f) (CategoryStruct.comp γ f))
theorem
CategoryTheory.Groupoid.vertexGroupIsomOfMap_symm_apply
{C : Type u}
[Groupoid C]
{c d : C}
(f : Quiver.Hom c d)
(δ : Quiver.Hom d d)
:
Eq (DFunLike.coe (vertexGroupIsomOfMap f).symm δ) (CategoryStruct.comp f (CategoryStruct.comp δ (inv f)))
def
CategoryTheory.Groupoid.vertexGroupIsomOfPath
{C : Type u}
[Groupoid C]
{c d : C}
(p : Quiver.Path c d)
:
MulEquiv (Quiver.Hom c c) (Quiver.Hom d d)
A path in the groupoid defines an isomorphism between its endpoints.
Equations
Instances For
def
CategoryTheory.Groupoid.CategoryTheory.Functor.mapVertexGroup
{C : Type u}
[Groupoid C]
{D : Type v}
[Groupoid D]
(φ : Functor C D)
(c : C)
:
MonoidHom (Quiver.Hom c c) (Quiver.Hom (φ.obj c) (φ.obj c))
A functor defines a morphism of vertex group.
Equations
- Eq (CategoryTheory.Groupoid.CategoryTheory.Functor.mapVertexGroup φ c) { toFun := φ.map, map_one' := ⋯, map_mul' := ⋯ }
Instances For
theorem
CategoryTheory.Groupoid.CategoryTheory.Functor.mapVertexGroup_apply
{C : Type u}
[Groupoid C]
{D : Type v}
[Groupoid D]
(φ : Functor C D)
(c : C)
(a✝ : Quiver.Hom c c)
:
Eq (DFunLike.coe (mapVertexGroup φ c) a✝) (φ.map a✝)