Guitart exact squares involving Over categories #
Let F : C ⥤ D be a functor and X : C. One may consider the
commutative square of categories where vertical functors are Over.forget:
Over.post F
Over X ⥤ Over (F.obj X)
| |
v v
C ⥤ D
F
We show that this square is Guitart exact if for all Y : C, the binary product X ⨯ Y
exists and F commutes with it.
@[reducible, inline]
abbrev
CategoryTheory.TwoSquare.overPost
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(F : Functor C D)
(X : C)
:
TwoSquare (Over.post F) (Over.forget X) (Over.forget (F.obj X)) F
Given F : C ⥤ D and X : C, this is the 2-square
Over.post F
Over X ⥤ Over (F.obj X)
| |
v v
C ⥤ D
F
with Over.forget as vertical functors.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.instGuitartExactOverObjOverPostOfHasBinaryProductOfPreservesLimitDiscreteWalkingPairPair
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(F : Functor C D)
(X : C)
[∀ (Y : C), Limits.HasBinaryProduct X Y]
[∀ (Y : C), Limits.PreservesLimit (Limits.pair X Y) F]
: