Documentation

Mathlib.CategoryTheory.Iso

Isomorphisms #

This file defines isomorphisms between objects of a category.

Main definitions #

Notations #

Tags #

category, category theory, isomorphism

structure CategoryTheory.Iso {C : Type u} [Category.{v, u} C] (X Y : C) :

An isomorphism (a.k.a. an invertible morphism) between two objects of a category. The inverse morphism is bundled.

See also CategoryTheory.Core for the category with the same objects and isomorphisms playing the role of morphisms.

See https://stacks.math.columbia.edu/tag/0017.

  • hom : X Y

    The forward direction of an isomorphism.

  • inv : Y X

    The backwards direction of an isomorphism.

  • hom_inv_id : CategoryStruct.comp self.hom self.inv = CategoryStruct.id X

    Composition of the two directions of an isomorphism is the identity on the source.

  • inv_hom_id : CategoryStruct.comp self.inv self.hom = CategoryStruct.id Y

    Composition of the two directions of an isomorphism in reverse order is the identity on the target.

Instances For
    @[simp]
    theorem CategoryTheory.Iso.hom_inv_id_assoc {C : Type u} [Category.{v, u} C] {X Y : C} (self : X Y) {Z : C} (h : X Z) :
    CategoryStruct.comp self.hom (CategoryStruct.comp self.inv h) = h
    @[simp]
    theorem CategoryTheory.Iso.inv_hom_id_assoc {C : Type u} [Category.{v, u} C] {X Y : C} (self : X Y) {Z : C} (h : Y Z) :
    CategoryStruct.comp self.inv (CategoryStruct.comp self.hom h) = h

    Notation for an isomorphism in a category.

    Equations
    Instances For
      theorem CategoryTheory.Iso.ext {C : Type u} [Category.{v, u} C] {X Y : C} ⦃α β : X Y (w : α.hom = β.hom) :
      α = β
      def CategoryTheory.Iso.symm {C : Type u} [Category.{v, u} C] {X Y : C} (I : X Y) :
      Y X

      Inverse isomorphism.

      Equations
      • I.symm = { hom := I.inv, inv := I.hom, hom_inv_id := , inv_hom_id := }
      Instances For
        @[simp]
        theorem CategoryTheory.Iso.symm_hom {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) :
        α.symm.hom = α.inv
        @[simp]
        theorem CategoryTheory.Iso.symm_inv {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) :
        α.symm.inv = α.hom
        @[simp]
        theorem CategoryTheory.Iso.symm_mk {C : Type u} [Category.{v, u} C] {X Y : C} (hom : X Y) (inv : Y X) (hom_inv_id : CategoryStruct.comp hom inv = CategoryStruct.id X) (inv_hom_id : CategoryStruct.comp inv hom = CategoryStruct.id Y) :
        { hom := hom, inv := inv, hom_inv_id := hom_inv_id, inv_hom_id := inv_hom_id }.symm = { hom := inv, inv := hom, hom_inv_id := inv_hom_id, inv_hom_id := hom_inv_id }
        @[simp]
        theorem CategoryTheory.Iso.symm_symm_eq {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) :
        α.symm.symm = α
        @[simp]
        theorem CategoryTheory.Iso.symm_eq_iff {C : Type u} [Category.{v, u} C] {X Y : C} {α β : X Y} :
        α.symm = β.symm α = β
        def CategoryTheory.Iso.refl {C : Type u} [Category.{v, u} C] (X : C) :
        X X

        Identity isomorphism.

        Equations
        Instances For
          @[simp]
          @[simp]
          @[simp]
          theorem CategoryTheory.Iso.refl_symm {C : Type u} [Category.{v, u} C] (X : C) :
          (refl X).symm = refl X
          def CategoryTheory.Iso.trans {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) (β : Y Z) :
          X Z

          Composition of two isomorphisms

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Iso.trans_inv {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) (β : Y Z) :
            (α ≪≫ β).inv = CategoryStruct.comp β.inv α.inv
            @[simp]
            theorem CategoryTheory.Iso.trans_hom {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) (β : Y Z) :
            (α ≪≫ β).hom = CategoryStruct.comp α.hom β.hom
            instance CategoryTheory.Iso.instTransIso {C : Type u} [Category.{v, u} C] :
            Trans (fun (x1 x2 : C) => x1 x2) (fun (x1 x2 : C) => x1 x2) fun (x1 x2 : C) => x1 x2
            Equations
            @[simp]
            theorem CategoryTheory.Iso.instTransIso_trans {C : Type u} [Category.{v, u} C] {a✝ b✝ c✝ : C} (α : a✝ b✝) (β : b✝ c✝) :
            Trans.trans α β = α ≪≫ β

            Notation for composition of isomorphisms.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Iso.trans_mk {C : Type u} [Category.{v, u} C] {X Y Z : C} (hom : X Y) (inv : Y X) (hom_inv_id : CategoryStruct.comp hom inv = CategoryStruct.id X) (inv_hom_id : CategoryStruct.comp inv hom = CategoryStruct.id Y) (hom' : Y Z) (inv' : Z Y) (hom_inv_id' : CategoryStruct.comp hom' inv' = CategoryStruct.id Y) (inv_hom_id' : CategoryStruct.comp inv' hom' = CategoryStruct.id Z) (hom_inv_id'' : CategoryStruct.comp (CategoryStruct.comp hom hom') (CategoryStruct.comp inv' inv) = CategoryStruct.id X) (inv_hom_id'' : CategoryStruct.comp (CategoryStruct.comp inv' inv) (CategoryStruct.comp hom hom') = CategoryStruct.id Z) :
              { hom := hom, inv := inv, hom_inv_id := hom_inv_id, inv_hom_id := inv_hom_id } ≪≫ { hom := hom', inv := inv', hom_inv_id := hom_inv_id', inv_hom_id := inv_hom_id' } = { hom := CategoryStruct.comp hom hom', inv := CategoryStruct.comp inv' inv, hom_inv_id := hom_inv_id'', inv_hom_id := inv_hom_id'' }
              @[simp]
              theorem CategoryTheory.Iso.trans_symm {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) (β : Y Z) :
              (α ≪≫ β).symm = β.symm ≪≫ α.symm
              @[simp]
              theorem CategoryTheory.Iso.trans_assoc {C : Type u} [Category.{v, u} C] {X Y Z Z' : C} (α : X Y) (β : Y Z) (γ : Z Z') :
              (α ≪≫ β) ≪≫ γ = α ≪≫ β ≪≫ γ
              @[simp]
              theorem CategoryTheory.Iso.refl_trans {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) :
              refl X ≪≫ α = α
              @[simp]
              theorem CategoryTheory.Iso.trans_refl {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) :
              α ≪≫ refl Y = α
              @[simp]
              theorem CategoryTheory.Iso.symm_self_id {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) :
              α.symm ≪≫ α = refl Y
              @[simp]
              theorem CategoryTheory.Iso.self_symm_id {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) :
              α ≪≫ α.symm = refl X
              @[simp]
              theorem CategoryTheory.Iso.symm_self_id_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) (β : Y Z) :
              α.symm ≪≫ α ≪≫ β = β
              @[simp]
              theorem CategoryTheory.Iso.self_symm_id_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) (β : X Z) :
              α ≪≫ α.symm ≪≫ β = β
              theorem CategoryTheory.Iso.inv_comp_eq {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) {f : X Z} {g : Y Z} :
              theorem CategoryTheory.Iso.eq_inv_comp {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) {f : X Z} {g : Y Z} :
              theorem CategoryTheory.Iso.comp_inv_eq {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) {f : Z Y} {g : Z X} :
              theorem CategoryTheory.Iso.eq_comp_inv {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) {f : Z Y} {g : Z X} :
              theorem CategoryTheory.Iso.inv_eq_inv {C : Type u} [Category.{v, u} C] {X Y : C} (f g : X Y) :
              f.inv = g.inv f.hom = g.hom
              theorem CategoryTheory.Iso.hom_comp_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {f : Y X} :
              theorem CategoryTheory.Iso.comp_hom_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {f : Y X} :
              theorem CategoryTheory.Iso.inv_comp_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {f : X Y} :
              theorem CategoryTheory.Iso.comp_inv_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {f : X Y} :
              theorem CategoryTheory.Iso.hom_eq_inv {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) (β : Y X) :
              α.hom = β.inv β.hom = α.inv
              def CategoryTheory.Iso.homToEquiv {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {Z : C} :
              (Z X) (Z Y)

              The bijection (Z ⟶ X) ≃ (Z ⟶ Y) induced by α : X ≅ Y.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Iso.homToEquiv_apply {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {Z : C} (f : Z X) :
                α.homToEquiv f = CategoryStruct.comp f α.hom
                @[simp]
                theorem CategoryTheory.Iso.homToEquiv_symm_apply {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {Z : C} (g : Z Y) :
                α.homToEquiv.symm g = CategoryStruct.comp g α.inv
                def CategoryTheory.Iso.homFromEquiv {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {Z : C} :
                (X Z) (Y Z)

                The bijection (X ⟶ Z) ≃ (Y ⟶ Z) induced by α : X ≅ Y.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.Iso.homFromEquiv_apply {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {Z : C} (f : X Z) :
                  α.homFromEquiv f = CategoryStruct.comp α.inv f
                  @[simp]
                  theorem CategoryTheory.Iso.homFromEquiv_symm_apply {C : Type u} [Category.{v, u} C] {X Y : C} (α : X Y) {Z : C} (g : Y Z) :
                  α.homFromEquiv.symm g = CategoryStruct.comp α.hom g
                  class CategoryTheory.IsIso {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) :

                  IsIso typeclass expressing that a morphism is invertible.

                  Instances
                    noncomputable def CategoryTheory.inv {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) [I : IsIso f] :
                    Y X

                    The inverse of a morphism f when we have [IsIso f].

                    Equations
                    Instances For
                      @[simp]
                      @[simp]
                      @[simp]
                      theorem CategoryTheory.IsIso.hom_inv_id_assoc {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) [I : IsIso f] {Z : C} (g : X Z) :
                      @[simp]
                      theorem CategoryTheory.IsIso.inv_hom_id_assoc {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) [I : IsIso f] {Z : C} (g : Y Z) :
                      instance CategoryTheory.Iso.isIso_hom {C : Type u} [Category.{v, u} C] {X Y : C} (e : X Y) :
                      IsIso e.hom
                      instance CategoryTheory.Iso.isIso_inv {C : Type u} [Category.{v, u} C] {X Y : C} (e : X Y) :
                      IsIso e.inv
                      noncomputable def CategoryTheory.asIso {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) [IsIso f] :
                      X Y

                      Reinterpret a morphism f with an IsIso f instance as an Iso.

                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.asIso_hom {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) {x✝ : IsIso f} :
                        (asIso f).hom = f
                        @[simp]
                        theorem CategoryTheory.asIso_inv {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) {x✝ : IsIso f} :
                        (asIso f).inv = inv f
                        @[instance 100]
                        instance CategoryTheory.IsIso.epi_of_iso {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) [IsIso f] :
                        Epi f
                        @[instance 100]
                        instance CategoryTheory.IsIso.mono_of_iso {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) [IsIso f] :
                        theorem CategoryTheory.IsIso.inv_eq_of_hom_inv_id {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} [IsIso f] {g : Y X} (hom_inv_id : CategoryStruct.comp f g = CategoryStruct.id X) :
                        inv f = g
                        theorem CategoryTheory.IsIso.inv_eq_of_inv_hom_id {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} [IsIso f] {g : Y X} (inv_hom_id : CategoryStruct.comp g f = CategoryStruct.id Y) :
                        inv f = g
                        theorem CategoryTheory.IsIso.eq_inv_of_hom_inv_id {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} [IsIso f] {g : Y X} (hom_inv_id : CategoryStruct.comp f g = CategoryStruct.id X) :
                        g = inv f
                        theorem CategoryTheory.IsIso.eq_inv_of_inv_hom_id {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} [IsIso f] {g : Y X} (inv_hom_id : CategoryStruct.comp g f = CategoryStruct.id Y) :
                        g = inv f
                        @[deprecated CategoryTheory.Iso.isIso_hom (since := "2024-05-15")]
                        theorem CategoryTheory.IsIso.of_iso {C : Type u} [Category.{v, u} C] {X Y : C} (e : X Y) :
                        IsIso e.hom

                        Alias of CategoryTheory.Iso.isIso_hom.

                        @[deprecated CategoryTheory.Iso.isIso_inv (since := "2024-05-15")]
                        theorem CategoryTheory.IsIso.of_iso_inv {C : Type u} [Category.{v, u} C] {X Y : C} (e : X Y) :
                        IsIso e.inv

                        Alias of CategoryTheory.Iso.isIso_inv.

                        instance CategoryTheory.IsIso.inv_isIso {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} [IsIso f] :
                        @[instance 900]
                        instance CategoryTheory.IsIso.comp_isIso {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {h : Y Z} [IsIso f] [IsIso h] :
                        theorem CategoryTheory.IsIso.comp_isIso' {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {h : Y Z} :

                        The composition of isomorphisms is an isomorphism. Here the arguments of type IsIso are explicit, to make this easier to use with the refine tactic, for instance.

                        @[simp]
                        theorem CategoryTheory.IsIso.inv_comp {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {h : Y Z} [IsIso f] [IsIso h] :
                        theorem CategoryTheory.IsIso.inv_comp_assoc {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {h : Y Z} [IsIso f] [IsIso h] {Z✝ : C} (h✝ : X Z✝) :
                        @[simp]
                        theorem CategoryTheory.IsIso.inv_inv {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} [IsIso f] :
                        inv (inv f) = f
                        @[simp]
                        theorem CategoryTheory.IsIso.Iso.inv_inv {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) :
                        inv f.inv = f.hom
                        @[simp]
                        theorem CategoryTheory.IsIso.Iso.inv_hom {C : Type u} [Category.{v, u} C] {X Y : C} (f : X Y) :
                        inv f.hom = f.inv
                        @[simp]
                        theorem CategoryTheory.IsIso.inv_comp_eq {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) [IsIso α] {f : X Z} {g : Y Z} :
                        @[simp]
                        theorem CategoryTheory.IsIso.eq_inv_comp {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) [IsIso α] {f : X Z} {g : Y Z} :
                        @[simp]
                        theorem CategoryTheory.IsIso.comp_inv_eq {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) [IsIso α] {f : Z Y} {g : Z X} :
                        @[simp]
                        theorem CategoryTheory.IsIso.eq_comp_inv {C : Type u} [Category.{v, u} C] {X Y Z : C} (α : X Y) [IsIso α] {f : Z Y} {g : Z X} :
                        theorem CategoryTheory.IsIso.of_isIso_comp_left {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : Y Z) [IsIso f] [IsIso (CategoryStruct.comp f g)] :
                        theorem CategoryTheory.IsIso.of_isIso_comp_right {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : Y Z) [IsIso g] [IsIso (CategoryStruct.comp f g)] :
                        theorem CategoryTheory.IsIso.of_isIso_fac_left {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {g : Y Z} {h : X Z} [IsIso f] [hh : IsIso h] (w : CategoryStruct.comp f g = h) :
                        theorem CategoryTheory.IsIso.of_isIso_fac_right {C : Type u} [Category.{v, u} C] {X Y Z : C} {f : X Y} {g : Y Z} {h : X Z} [IsIso g] [hh : IsIso h] (w : CategoryStruct.comp f g = h) :
                        theorem CategoryTheory.eq_of_inv_eq_inv {C : Type u} [Category.{v, u} C] {X Y : C} {f g : X Y} [IsIso f] [IsIso g] (p : inv f = inv g) :
                        f = g
                        theorem CategoryTheory.IsIso.inv_eq_inv {C : Type u} [Category.{v, u} C] {X Y : C} {f g : X Y} [IsIso f] [IsIso g] :
                        inv f = inv g f = g
                        theorem CategoryTheory.hom_comp_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (g : X Y) [IsIso g] {f : Y X} :
                        theorem CategoryTheory.comp_hom_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (g : X Y) [IsIso g] {f : Y X} :
                        theorem CategoryTheory.inv_comp_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (g : X Y) [IsIso g] {f : X Y} :
                        theorem CategoryTheory.comp_inv_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (g : X Y) [IsIso g] {f : X Y} :
                        theorem CategoryTheory.isIso_of_hom_comp_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (g : X Y) [IsIso g] {f : Y X} (h : CategoryStruct.comp g f = CategoryStruct.id X) :
                        theorem CategoryTheory.isIso_of_comp_hom_eq_id {C : Type u} [Category.{v, u} C] {X Y : C} (g : X Y) [IsIso g] {f : Y X} (h : CategoryStruct.comp f g = CategoryStruct.id Y) :
                        theorem CategoryTheory.Iso.inv_ext {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} {g : Y X} (hom_inv_id : CategoryStruct.comp f.hom g = CategoryStruct.id X) :
                        f.inv = g
                        theorem CategoryTheory.Iso.inv_ext' {C : Type u} [Category.{v, u} C] {X Y : C} {f : X Y} {g : Y X} (hom_inv_id : CategoryStruct.comp f.hom g = CategoryStruct.id X) :
                        g = f.inv

                        All these cancellation lemmas can be solved by simp [cancel_mono] (or simp [cancel_epi]), but with the current design cancel_mono is not a good simp lemma, because it generates a typeclass search.

                        When we can see syntactically that a morphism is a mono or an epi because it came from an isomorphism, it's fine to do the cancellation via simp.

                        In the longer term, it might be worth exploring making mono and epi structures, rather than typeclasses, with coercions back to X ⟶ Y. Presumably we could write X ↪ Y and X ↠ Y.

                        @[simp]
                        theorem CategoryTheory.Iso.cancel_iso_hom_left {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g g' : Y Z) :
                        @[simp]
                        theorem CategoryTheory.Iso.cancel_iso_inv_left {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : Y X) (g g' : Y Z) :
                        @[simp]
                        theorem CategoryTheory.Iso.cancel_iso_hom_right {C : Type u} [Category.{v, u} C] {X Y Z : C} (f f' : X Y) (g : Y Z) :
                        @[simp]
                        theorem CategoryTheory.Iso.cancel_iso_inv_right {C : Type u} [Category.{v, u} C] {X Y Z : C} (f f' : X Y) (g : Z Y) :
                        @[simp]
                        theorem CategoryTheory.Iso.cancel_iso_hom_right_assoc {C : Type u} [Category.{v, u} C] {W X X' Y Z : C} (f : W X) (g : X Y) (f' : W X') (g' : X' Y) (h : Y Z) :
                        @[simp]
                        theorem CategoryTheory.Iso.cancel_iso_inv_right_assoc {C : Type u} [Category.{v, u} C] {W X X' Y Z : C} (f : W X) (g : X Y) (f' : W X') (g' : X' Y) (h : Z Y) :
                        @[simp]
                        theorem CategoryTheory.Iso.map_hom_inv_id {C : Type u} [Category.{v, u} C] {D : Type u_1} [Category.{u_2, u_1} D] {X Y : C} (e : X Y) (F : Functor C D) :
                        CategoryStruct.comp (F.map e.hom) (F.map e.inv) = CategoryStruct.id (F.obj X)
                        @[simp]
                        theorem CategoryTheory.Iso.map_hom_inv_id_assoc {C : Type u} [Category.{v, u} C] {D : Type u_1} [Category.{u_2, u_1} D] {X Y : C} (e : X Y) (F : Functor C D) {Z : D} (h : F.obj X Z) :
                        CategoryStruct.comp (F.map e.hom) (CategoryStruct.comp (F.map e.inv) h) = h
                        @[simp]
                        theorem CategoryTheory.Iso.map_inv_hom_id {C : Type u} [Category.{v, u} C] {D : Type u_1} [Category.{u_2, u_1} D] {X Y : C} (e : X Y) (F : Functor C D) :
                        CategoryStruct.comp (F.map e.inv) (F.map e.hom) = CategoryStruct.id (F.obj Y)
                        @[simp]
                        theorem CategoryTheory.Iso.map_inv_hom_id_assoc {C : Type u} [Category.{v, u} C] {D : Type u_1} [Category.{u_2, u_1} D] {X Y : C} (e : X Y) (F : Functor C D) {Z : D} (h : F.obj Y Z) :
                        CategoryStruct.comp (F.map e.inv) (CategoryStruct.comp (F.map e.hom) h) = h
                        def CategoryTheory.Functor.mapIso {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (i : X Y) :
                        F.obj X F.obj Y

                        A functor F : C ⥤ D sends isomorphisms i : X ≅ Y to isomorphisms F.obj X ≅ F.obj Y

                        Equations
                        • F.mapIso i = { hom := F.map i.hom, inv := F.map i.inv, hom_inv_id := , inv_hom_id := }
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Functor.mapIso_inv {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (i : X Y) :
                          (F.mapIso i).inv = F.map i.inv
                          @[simp]
                          theorem CategoryTheory.Functor.mapIso_hom {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (i : X Y) :
                          (F.mapIso i).hom = F.map i.hom
                          @[simp]
                          theorem CategoryTheory.Functor.mapIso_symm {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (i : X Y) :
                          F.mapIso i.symm = (F.mapIso i).symm
                          @[simp]
                          theorem CategoryTheory.Functor.mapIso_trans {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y Z : C} (i : X Y) (j : Y Z) :
                          F.mapIso (i ≪≫ j) = F.mapIso i ≪≫ F.mapIso j
                          @[simp]
                          theorem CategoryTheory.Functor.mapIso_refl {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (X : C) :
                          F.mapIso (Iso.refl X) = Iso.refl (F.obj X)
                          instance CategoryTheory.Functor.map_isIso {C : Type u} [Category.{v, u} C] {X Y : C} {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) (f : X Y) [IsIso f] :
                          IsIso (F.map f)
                          @[simp]
                          theorem CategoryTheory.Functor.map_inv {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (f : X Y) [IsIso f] :
                          F.map (inv f) = inv (F.map f)
                          theorem CategoryTheory.Functor.map_hom_inv {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (f : X Y) [IsIso f] :
                          CategoryStruct.comp (F.map f) (F.map (inv f)) = CategoryStruct.id (F.obj X)
                          theorem CategoryTheory.Functor.map_hom_inv_assoc {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (f : X Y) [IsIso f] {Z : D} (h : F.obj X Z) :
                          CategoryStruct.comp (F.map f) (CategoryStruct.comp (F.map (inv f)) h) = h
                          theorem CategoryTheory.Functor.map_inv_hom {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (f : X Y) [IsIso f] :
                          CategoryStruct.comp (F.map (inv f)) (F.map f) = CategoryStruct.id (F.obj Y)
                          theorem CategoryTheory.Functor.map_inv_hom_assoc {C : Type u} [Category.{v, u} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X Y : C} (f : X Y) [IsIso f] {Z : D} (h : F.obj Y Z) :
                          CategoryStruct.comp (F.map (inv f)) (CategoryStruct.comp (F.map f) h) = h