Bicones #
Given a category J
, a walking Bicone J
is a category whose objects are the objects of J
and
two extra vertices Bicone.left
and Bicone.right
. The morphisms are the morphisms of J
and
left ⟶ j
, right ⟶ j
for each j : J
such that (· ⟶ j)
and (· ⟶ k)
commutes with each
f : j ⟶ k
.
Given a diagram F : J ⥤ C
and two Cone F
s, we can join them into a diagram Bicone J ⥤ C
via
biconeMk
.
This is used in CategoryTheory.Functor.Flat
.
instance
CategoryTheory.instDecidableEqBicone
{J✝ : Type u_1}
[DecidableEq J✝]
:
DecidableEq (Bicone J✝)
Equations
- CategoryTheory.instInhabitedBicone J = { default := CategoryTheory.Bicone.left }
The homs for a walking Bicone J
.
- left_id {J : Type u₁} [Category.{v₁, u₁} J] : BiconeHom J Bicone.left Bicone.left
- right_id {J : Type u₁} [Category.{v₁, u₁} J] : BiconeHom J Bicone.right Bicone.right
- left {J : Type u₁} [Category.{v₁, u₁} J] (j : J) : BiconeHom J Bicone.left (Bicone.diagram j)
- right {J : Type u₁} [Category.{v₁, u₁} J] (j : J) : BiconeHom J Bicone.right (Bicone.diagram j)
- diagram {J : Type u₁} [Category.{v₁, u₁} J] {j k : J} (f : j ⟶ k) : BiconeHom J (Bicone.diagram j) (Bicone.diagram k)
Instances For
Equations
- CategoryTheory.instInhabitedBiconeHomLeft J = { default := CategoryTheory.BiconeHom.left_id }
instance
CategoryTheory.BiconeHom.decidableEq
(J : Type u₁)
[Category.{v₁, u₁} J]
{j k : Bicone J}
:
DecidableEq (BiconeHom J j k)
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CategoryTheory.biconeCategoryStruct_id
(J : Type u₁)
[Category.{v₁, u₁} J]
(j : Bicone J)
:
CategoryStruct.id j = Bicone.casesOn j BiconeHom.left_id BiconeHom.right_id fun (k : J) => BiconeHom.diagram (CategoryStruct.id k)
@[simp]
theorem
CategoryTheory.biconeCategoryStruct_comp
(J : Type u₁)
[Category.{v₁, u₁} J]
{X✝ Y✝ Z✝ : Bicone J}
(f : X✝ ⟶ Y✝)
(g : Y✝ ⟶ Z✝)
:
CategoryStruct.comp f g = BiconeHom.casesOn (motive := fun (a a_1 : Bicone J) (x : BiconeHom J a a_1) =>
X✝ = a → Y✝ = a_1 → HEq f x → (X✝ ⟶ Z✝)) f
(fun (h : X✝ = Bicone.left) =>
Eq.ndrec (motive := fun {X : Bicone J} => (f : X ⟶ Y✝) → Y✝ = Bicone.left → HEq f BiconeHom.left_id → (X ⟶ Z✝))
(fun (f : Bicone.left ⟶ Y✝) (h : Y✝ = Bicone.left) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(Y ⟶ Z✝) → (f : Bicone.left ⟶ Y) → HEq f BiconeHom.left_id → (Bicone.left ⟶ Z✝))
(fun (g : Bicone.left ⟶ Z✝) (f : Bicone.left ⟶ Bicone.left) (h : HEq f BiconeHom.left_id) => g) ⋯ g f)
⋯ f)
(fun (h : X✝ = Bicone.right) =>
Eq.ndrec (motive := fun {X : Bicone J} => (f : X ⟶ Y✝) → Y✝ = Bicone.right → HEq f BiconeHom.right_id → (X ⟶ Z✝))
(fun (f : Bicone.right ⟶ Y✝) (h : Y✝ = Bicone.right) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(Y ⟶ Z✝) → (f : Bicone.right ⟶ Y) → HEq f BiconeHom.right_id → (Bicone.right ⟶ Z✝))
(fun (g : Bicone.right ⟶ Z✝) (f : Bicone.right ⟶ Bicone.right) (h : HEq f BiconeHom.right_id) => g) ⋯ g f)
⋯ f)
(fun (j : J) (h : X✝ = Bicone.left) =>
Eq.ndrec (motive := fun {X : Bicone J} =>
(f : X ⟶ Y✝) → Y✝ = Bicone.diagram j → HEq f (BiconeHom.left j) → (X ⟶ Z✝))
(fun (f : Bicone.left ⟶ Y✝) (h : Y✝ = Bicone.diagram j) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(Y ⟶ Z✝) → (f : Bicone.left ⟶ Y) → HEq f (BiconeHom.left j) → (Bicone.left ⟶ Z✝))
(fun (g : Bicone.diagram j ⟶ Z✝) (f : Bicone.left ⟶ Bicone.diagram j) (h : HEq f (BiconeHom.left j)) =>
BiconeHom.casesOn (motive := fun (a a_1 : Bicone J) (t : BiconeHom J a a_1) =>
Bicone.diagram j = a → Z✝ = a_1 → HEq g t → (Bicone.left ⟶ Z✝)) g
(fun (h : Bicone.diagram j = Bicone.left) => Bicone.noConfusion h)
(fun (h : Bicone.diagram j = Bicone.right) => Bicone.noConfusion h)
(fun (j_1 : J) (h : Bicone.diagram j = Bicone.left) => Bicone.noConfusion h)
(fun (j_1 : J) (h : Bicone.diagram j = Bicone.right) => Bicone.noConfusion h)
(fun {j_1 k : J} (f : j_1 ⟶ k) (h : Bicone.diagram j = Bicone.diagram j_1) =>
Bicone.noConfusion h fun (val_eq : j = j_1) =>
Eq.ndrec (motive := fun {j_2 : J} =>
(f : j_2 ⟶ k) → Z✝ = Bicone.diagram k → HEq g (BiconeHom.diagram f) → (Bicone.left ⟶ Z✝))
(fun (f : j ⟶ k) (h : Z✝ = Bicone.diagram k) =>
Eq.ndrec (motive := fun {Z : Bicone J} =>
(g : Bicone.diagram j ⟶ Z) → HEq g (BiconeHom.diagram f) → (Bicone.left ⟶ Z))
(fun (g : Bicone.diagram j ⟶ Bicone.diagram k) (h : HEq g (BiconeHom.diagram f)) =>
BiconeHom.left k)
⋯ g)
val_eq f)
⋯ ⋯ ⋯)
⋯ g f)
⋯ f)
(fun (j : J) (h : X✝ = Bicone.right) =>
Eq.ndrec (motive := fun {X : Bicone J} =>
(f : X ⟶ Y✝) → Y✝ = Bicone.diagram j → HEq f (BiconeHom.right j) → (X ⟶ Z✝))
(fun (f : Bicone.right ⟶ Y✝) (h : Y✝ = Bicone.diagram j) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(Y ⟶ Z✝) → (f : Bicone.right ⟶ Y) → HEq f (BiconeHom.right j) → (Bicone.right ⟶ Z✝))
(fun (g : Bicone.diagram j ⟶ Z✝) (f : Bicone.right ⟶ Bicone.diagram j) (h : HEq f (BiconeHom.right j)) =>
BiconeHom.casesOn (motive := fun (a a_1 : Bicone J) (t : BiconeHom J a a_1) =>
Bicone.diagram j = a → Z✝ = a_1 → HEq g t → (Bicone.right ⟶ Z✝)) g
(fun (h : Bicone.diagram j = Bicone.left) => Bicone.noConfusion h)
(fun (h : Bicone.diagram j = Bicone.right) => Bicone.noConfusion h)
(fun (j_1 : J) (h : Bicone.diagram j = Bicone.left) => Bicone.noConfusion h)
(fun (j_1 : J) (h : Bicone.diagram j = Bicone.right) => Bicone.noConfusion h)
(fun {j_1 k : J} (f : j_1 ⟶ k) (h : Bicone.diagram j = Bicone.diagram j_1) =>
Bicone.noConfusion h fun (val_eq : j = j_1) =>
Eq.ndrec (motive := fun {j_2 : J} =>
(f : j_2 ⟶ k) → Z✝ = Bicone.diagram k → HEq g (BiconeHom.diagram f) → (Bicone.right ⟶ Z✝))
(fun (f : j ⟶ k) (h : Z✝ = Bicone.diagram k) =>
Eq.ndrec (motive := fun {Z : Bicone J} =>
(g : Bicone.diagram j ⟶ Z) → HEq g (BiconeHom.diagram f) → (Bicone.right ⟶ Z))
(fun (g : Bicone.diagram j ⟶ Bicone.diagram k) (h : HEq g (BiconeHom.diagram f)) =>
BiconeHom.right k)
⋯ g)
val_eq f)
⋯ ⋯ ⋯)
⋯ g f)
⋯ f)
(fun {j k : J} (f_1 : j ⟶ k) (h : X✝ = Bicone.diagram j) =>
Eq.ndrec (motive := fun {X : Bicone J} =>
(f : X ⟶ Y✝) → Y✝ = Bicone.diagram k → HEq f (BiconeHom.diagram f_1) → (X ⟶ Z✝))
(fun (f : Bicone.diagram j ⟶ Y✝) (h : Y✝ = Bicone.diagram k) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(Y ⟶ Z✝) → (f : Bicone.diagram j ⟶ Y) → HEq f (BiconeHom.diagram f_1) → (Bicone.diagram j ⟶ Z✝))
(fun (g : Bicone.diagram k ⟶ Z✝) (f : Bicone.diagram j ⟶ Bicone.diagram k)
(h : HEq f (BiconeHom.diagram f_1)) =>
BiconeHom.casesOn (motive := fun (a a_1 : Bicone J) (x : BiconeHom J a a_1) =>
Bicone.diagram k = a → Z✝ = a_1 → HEq g x → (Bicone.diagram j ⟶ Z✝)) g
(fun (h : Bicone.diagram k = Bicone.left) => Bicone.noConfusion h)
(fun (h : Bicone.diagram k = Bicone.right) => Bicone.noConfusion h)
(fun (j_1 : J) (h : Bicone.diagram k = Bicone.left) => Bicone.noConfusion h)
(fun (j_1 : J) (h : Bicone.diagram k = Bicone.right) => Bicone.noConfusion h)
(fun {j_1 k_1 : J} (g_1 : j_1 ⟶ k_1) (h : Bicone.diagram k = Bicone.diagram j_1) =>
Bicone.noConfusion h fun (val_eq : k = j_1) =>
Eq.ndrec (motive := fun {j_2 : J} =>
(g_2 : j_2 ⟶ k_1) →
Z✝ = Bicone.diagram k_1 → HEq g (BiconeHom.diagram g_2) → (Bicone.diagram j ⟶ Z✝))
(fun (g_2 : k ⟶ k_1) (h : Z✝ = Bicone.diagram k_1) =>
Eq.ndrec (motive := fun {Z : Bicone J} =>
(g : Bicone.diagram k ⟶ Z) → HEq g (BiconeHom.diagram g_2) → (Bicone.diagram j ⟶ Z))
(fun (g : Bicone.diagram k ⟶ Bicone.diagram k_1) (h : HEq g (BiconeHom.diagram g_2)) =>
BiconeHom.diagram (CategoryStruct.comp f_1 g_2))
⋯ g)
val_eq g_1)
⋯ ⋯ ⋯)
⋯ g f)
⋯ f)
⋯ ⋯ ⋯
@[simp]
theorem
CategoryTheory.biconeCategoryStruct_Hom
(J : Type u₁)
[Category.{v₁, u₁} J]
(a✝ a✝¹ : Bicone J)
:
Equations
def
CategoryTheory.biconeMk
(J : Type v₁)
[SmallCategory J]
{C : Type u₁}
[Category.{v₁, u₁} C]
{F : Functor J C}
(c₁ c₂ : Limits.Cone F)
:
Given a diagram F : J ⥤ C
and two Cone F
s, we can join them into a diagram Bicone J ⥤ C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.biconeMk_map
(J : Type v₁)
[SmallCategory J]
{C : Type u₁}
[Category.{v₁, u₁} C]
{F : Functor J C}
(c₁ c₂ : Limits.Cone F)
{X✝ Y✝ : Bicone J}
(f : X✝ ⟶ Y✝)
:
(biconeMk J c₁ c₂).map f = BiconeHom.casesOn (motive := fun (a a_1 : Bicone J) (x : BiconeHom J a a_1) =>
X✝ = a →
Y✝ = a_1 →
HEq f x →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) X✝ ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y✝))
f
(fun (h : X✝ = Bicone.left) =>
Eq.ndrec (motive := fun {X : Bicone J} =>
(f : X ⟶ Y✝) →
Y✝ = Bicone.left →
HEq f BiconeHom.left_id →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) X ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y✝))
(fun (f : Bicone.left ⟶ Y✝) (h : Y✝ = Bicone.left) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(f : Bicone.left ⟶ Y) →
HEq f BiconeHom.left_id →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Bicone.left ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y))
(fun (f : Bicone.left ⟶ Bicone.left) (h : HEq f BiconeHom.left_id) =>
CategoryStruct.id
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Bicone.left))
⋯ f)
⋯ f)
(fun (h : X✝ = Bicone.right) =>
Eq.ndrec (motive := fun {X : Bicone J} =>
(f : X ⟶ Y✝) →
Y✝ = Bicone.right →
HEq f BiconeHom.right_id →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) X ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y✝))
(fun (f : Bicone.right ⟶ Y✝) (h : Y✝ = Bicone.right) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(f : Bicone.right ⟶ Y) →
HEq f BiconeHom.right_id →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Bicone.right ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y))
(fun (f : Bicone.right ⟶ Bicone.right) (h : HEq f BiconeHom.right_id) =>
CategoryStruct.id
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Bicone.right))
⋯ f)
⋯ f)
(fun (j : J) (h : X✝ = Bicone.left) =>
Eq.ndrec (motive := fun {X : Bicone J} =>
(f : X ⟶ Y✝) →
Y✝ = Bicone.diagram j →
HEq f (BiconeHom.left j) →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) X ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y✝))
(fun (f : Bicone.left ⟶ Y✝) (h : Y✝ = Bicone.diagram j) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(f : Bicone.left ⟶ Y) →
HEq f (BiconeHom.left j) →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Bicone.left ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y))
(fun (f : Bicone.left ⟶ Bicone.diagram j) (h : HEq f (BiconeHom.left j)) => c₁.π.app j) ⋯ f)
⋯ f)
(fun (j : J) (h : X✝ = Bicone.right) =>
Eq.ndrec (motive := fun {X : Bicone J} =>
(f : X ⟶ Y✝) →
Y✝ = Bicone.diagram j →
HEq f (BiconeHom.right j) →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) X ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y✝))
(fun (f : Bicone.right ⟶ Y✝) (h : Y✝ = Bicone.diagram j) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(f : Bicone.right ⟶ Y) →
HEq f (BiconeHom.right j) →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Bicone.right ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y))
(fun (f : Bicone.right ⟶ Bicone.diagram j) (h : HEq f (BiconeHom.right j)) => c₂.π.app j) ⋯ f)
⋯ f)
(fun {j k : J} (f_1 : j ⟶ k) (h : X✝ = Bicone.diagram j) =>
Eq.ndrec (motive := fun {X : Bicone J} =>
(f : X ⟶ Y✝) →
Y✝ = Bicone.diagram k →
HEq f (BiconeHom.diagram f_1) →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) X ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y✝))
(fun (f : Bicone.diagram j ⟶ Y✝) (h : Y✝ = Bicone.diagram k) =>
Eq.ndrec (motive := fun {Y : Bicone J} =>
(f : Bicone.diagram j ⟶ Y) →
HEq f (BiconeHom.diagram f_1) →
((fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) (Bicone.diagram j) ⟶ (fun (X : Bicone J) => Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j) Y))
(fun (f : Bicone.diagram j ⟶ Bicone.diagram k) (h : HEq f (BiconeHom.diagram f_1)) => F.map f_1) ⋯ f)
⋯ f)
⋯ ⋯ ⋯
@[simp]
theorem
CategoryTheory.biconeMk_obj
(J : Type v₁)
[SmallCategory J]
{C : Type u₁}
[Category.{v₁, u₁} C]
{F : Functor J C}
(c₁ c₂ : Limits.Cone F)
(X : Bicone J)
:
(biconeMk J c₁ c₂).obj X = Bicone.casesOn X c₁.pt c₂.pt fun (j : J) => F.obj j
instance
CategoryTheory.finBiconeHom
(J : Type v₁)
[SmallCategory J]
[FinCategory J]
(j k : Bicone J)
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.biconeSmallCategory
(J : Type v₁)
[SmallCategory J]
:
SmallCategory (Bicone J)
instance
CategoryTheory.biconeFinCategory
(J : Type v₁)
[SmallCategory J]
[FinCategory J]
:
FinCategory (Bicone J)
Equations
- CategoryTheory.biconeFinCategory J = { fintypeObj := inferInstance, fintypeHom := inferInstance }