Documentation

Mathlib.CategoryTheory.Limits.ConcreteCategory.WithAlgebraicStructures

Colimits in ModuleCat #

Let C be a concrete category and F : J ⥤ C a filtered diagram in C. We discuss some results about colimit F when objects and morphisms in C have some algebraic structures.

Main results #

Implementation details #

For now, we specialize our results to C = ModuleCat R, which is the only place they are used. In the future they might be generalized by assuming a HasForget₂ C (ModuleCat R) instance, plus assertions that the module structures induced by HasForget₂ coincide.

theorem CategoryTheory.Limits.Concrete.colimit_rep_eq_zero (R : Type u_1) [Ring R] {J : Type w} [Category.{r, w} J] (F : Functor J (ModuleCat R)) [PreservesColimit F (forget (ModuleCat R))] [IsFiltered J] [HasColimit F] (j : J) (x : (F.obj j)) (hx : (colimit.ι F j).hom x = 0) :
∃ (j' : J) (i : j j'), (F.map i).hom x = 0
theorem CategoryTheory.Limits.Concrete.colimit_no_zero_smul_divisor (R : Type u_1) [Ring R] {J : Type w} [Category.{r, w} J] (F : Functor J (ModuleCat R)) [PreservesColimit F (forget (ModuleCat R))] [IsFiltered J] [HasColimit F] (r : R) (H : ∃ (j' : J), ∀ (j : J), (j' j)∀ (c : (F.obj j)), r c = 0c = 0) (x : (forget (ModuleCat R)).obj (colimit F)) (hx : r x = 0) :
x = 0

if r has no zero smul divisors for all small-enough sections, then r has no zero smul divisors in the colimit.