(Co)limits in the category of finite types #
We show that finite (co)limits exist in FintypeCat
and that they are preserved by the natural
inclusion FintypeCat.incl
.
instance
CategoryTheory.Limits.FintypeCat.instFiniteObjToQuiverToCategoryStructTypeToQuiverToCategoryStructTypesToPrefunctorCompFintypeCatInstCategoryFintypeCatIncl
{J : Type}
[CategoryTheory.SmallCategory J]
(K : CategoryTheory.Functor J FintypeCat)
(j : J)
:
Finite ((CategoryTheory.Functor.comp K FintypeCat.incl).obj j)
Equations
- (_ : Finite ((CategoryTheory.Functor.comp K FintypeCat.incl).obj j)) = (_ : Finite ((CategoryTheory.Functor.comp K FintypeCat.incl).obj j))
noncomputable instance
CategoryTheory.Limits.FintypeCat.finiteLimitOfFiniteDiagram
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.FinCategory J]
(K : CategoryTheory.Functor J (Type u_1))
[∀ (j : J), Finite (K.obj j)]
:
Any functor from a finite category to Types that only involves finite objects, has a finite limit.
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
CategoryTheory.Limits.FintypeCat.inclusionCreatesFiniteLimits
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.FinCategory J]
:
Equations
- CategoryTheory.Limits.FintypeCat.inclusionCreatesFiniteLimits = CategoryTheory.CreatesLimitsOfShape.mk
instance
CategoryTheory.Limits.FintypeCat.instHasLimitsOfShapeFintypeCatInstCategoryFintypeCat
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.FinCategory J]
:
Equations
Equations
- CategoryTheory.Limits.FintypeCat.inclusionPreservesFiniteLimits = CategoryTheory.Limits.PreservesFiniteLimits.mk
noncomputable instance
CategoryTheory.Limits.FintypeCat.finiteColimitOfFiniteDiagram
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.FinCategory J]
(K : CategoryTheory.Functor J (Type u_1))
[∀ (j : J), Finite (K.obj j)]
:
Any functor from a finite category to Types that only involves finite objects, has a finite colimit.
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
CategoryTheory.Limits.FintypeCat.inclusionCreatesFiniteColimits
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.FinCategory J]
:
Equations
- CategoryTheory.Limits.FintypeCat.inclusionCreatesFiniteColimits = CategoryTheory.CreatesColimitsOfShape.mk
instance
CategoryTheory.Limits.FintypeCat.instHasColimitsOfShapeFintypeCatInstCategoryFintypeCat
{J : Type}
[CategoryTheory.SmallCategory J]
[CategoryTheory.FinCategory J]
:
Equations
Equations
- CategoryTheory.Limits.FintypeCat.inclusionPreservesFiniteColimits = CategoryTheory.Limits.PreservesFiniteColimits.mk