Preservation of filtered colimits and cofiltered limits. #
Typically forgetful functors from algebraic categories preserve filtered colimits
(although not general colimits). See e.g. Algebra/Category/MonCat/FilteredColimits
.
Future work #
This could be generalised to allow diagrams in lower universes.
class
CategoryTheory.Limits.PreservesFilteredColimits
{C : Type u₁}
[CategoryTheory.Category.{v, u₁} C]
{D : Type u₂}
[CategoryTheory.Category.{v, u₂} D]
(F : CategoryTheory.Functor C D)
:
Type (max u₁ u₂ (v + 1))
A functor is said to preserve filtered colimits, if it preserves all colimits of shape J
, where
J
is a filtered category.
- preserves_filtered_colimits : (J : Type v) → [inst : CategoryTheory.SmallCategory J] → [inst_1 : CategoryTheory.IsFiltered J] → CategoryTheory.Limits.PreservesColimitsOfShape J F
Instances
@[instance 100]
instance
CategoryTheory.Limits.PreservesColimits.preservesFilteredColimits
{C : Type u₁}
[CategoryTheory.Category.{v, u₁} C]
{D : Type u₂}
[CategoryTheory.Category.{v, u₂} D]
(F : CategoryTheory.Functor C D)
[CategoryTheory.Limits.PreservesColimits F]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.Limits.compPreservesFilteredColimits
{C : Type u₁}
[CategoryTheory.Category.{v, u₁} C]
{D : Type u₂}
[CategoryTheory.Category.{v, u₂} D]
{E : Type u₃}
[CategoryTheory.Category.{v, u₃} E]
(F : CategoryTheory.Functor C D)
(G : CategoryTheory.Functor D E)
[CategoryTheory.Limits.PreservesFilteredColimits F]
[CategoryTheory.Limits.PreservesFilteredColimits G]
:
Equations
- One or more equations did not get rendered due to their size.
class
CategoryTheory.Limits.PreservesCofilteredLimits
{C : Type u₁}
[CategoryTheory.Category.{v, u₁} C]
{D : Type u₂}
[CategoryTheory.Category.{v, u₂} D]
(F : CategoryTheory.Functor C D)
:
Type (max u₁ u₂ (v + 1))
A functor is said to preserve cofiltered limits, if it preserves all limits of shape J
, where
J
is a cofiltered category.
- preserves_cofiltered_limits : (J : Type v) → [inst : CategoryTheory.SmallCategory J] → [inst_1 : CategoryTheory.IsCofiltered J] → CategoryTheory.Limits.PreservesLimitsOfShape J F
Instances
@[instance 100]
instance
CategoryTheory.Limits.PreservesLimits.preservesCofilteredLimits
{C : Type u₁}
[CategoryTheory.Category.{v, u₁} C]
{D : Type u₂}
[CategoryTheory.Category.{v, u₂} D]
(F : CategoryTheory.Functor C D)
[CategoryTheory.Limits.PreservesLimits F]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.Limits.compPreservesCofilteredLimits
{C : Type u₁}
[CategoryTheory.Category.{v, u₁} C]
{D : Type u₂}
[CategoryTheory.Category.{v, u₂} D]
{E : Type u₃}
[CategoryTheory.Category.{v, u₃} E]
(F : CategoryTheory.Functor C D)
(G : CategoryTheory.Functor D E)
[CategoryTheory.Limits.PreservesCofilteredLimits F]
[CategoryTheory.Limits.PreservesCofilteredLimits G]
:
Equations
- One or more equations did not get rendered due to their size.