Limit preservation properties of Functor.op
and related constructions #
We formulate conditions about F
which imply that F.op
, F.unop
, F.leftOp
and F.rightOp
preserve certain (co)limits and vice versa.
If F : C ⥤ D
preserves colimits of K.leftOp : Jᵒᵖ ⥤ C
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves
limits of K : J ⥤ Cᵒᵖ
.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F : C ⥤ D
preserves
limits of K : J ⥤ C
.
If F : C ⥤ Dᵒᵖ
preserves colimits of K.leftOp : Jᵒᵖ ⥤ C
, then F.leftOp : Cᵒᵖ ⥤ D
preserves limits of K : J ⥤ Cᵒᵖ
.
If F.leftOp : Cᵒᵖ ⥤ D
preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F : C ⥤ Dᵒᵖ
preserves
limits of K : J ⥤ C
.
If F : Cᵒᵖ ⥤ D
preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.rightOp : C ⥤ Dᵒᵖ
preserves
limits of K : J ⥤ C
.
If F.rightOp : C ⥤ Dᵒᵖ
preserves colimits of K.leftOp : Jᵒᵖ ⥤ Cᵒᵖ
, then F : Cᵒᵖ ⥤ D
preserves limits of K : J ⥤ Cᵒᵖ
.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.unop : C ⥤ D
preserves
limits of K : J ⥤ C
.
If F.unop : C ⥤ D
preserves colimits of K.leftOp : Jᵒᵖ ⥤ C
, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves
limits of K : J ⥤ Cᵒᵖ
.
If F : C ⥤ D
preserves limits of K.leftOp : Jᵒᵖ ⥤ C
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves
colimits of K : J ⥤ Cᵒᵖ
.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F : C ⥤ D
preserves
colimits of K : J ⥤ C
.
If F : C ⥤ Dᵒᵖ
preserves limits of K.leftOp : Jᵒᵖ ⥤ C
, then F.leftOp : Cᵒᵖ ⥤ D
preserves
colimits of K : J ⥤ Cᵒᵖ
.
If F.leftOp : Cᵒᵖ ⥤ D
preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F : C ⥤ Dᵒᵖ
preserves
colimits of K : J ⥤ C
.
If F : Cᵒᵖ ⥤ D
preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.rightOp : C ⥤ Dᵒᵖ
preserves
colimits of K : J ⥤ C
.
If F.rightOp : C ⥤ Dᵒᵖ
preserves limits of K.leftOp : Jᵒᵖ ⥤ C
, then F : Cᵒᵖ ⥤ D
preserves colimits of K : J ⥤ Cᵒᵖ
.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ
, then F.unop : C ⥤ D
preserves
colimits of K : J ⥤ C
.
If F.unop : C ⥤ D
preserves limits of K.op : Jᵒᵖ ⥤ C
, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves
colimits of K : J ⥤ Cᵒᵖ
.
If F : C ⥤ D
preserves colimits of shape Jᵒᵖ
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of
shape J
.
If F : C ⥤ Dᵒᵖ
preserves colimits of shape Jᵒᵖ
, then F.leftOp : Cᵒᵖ ⥤ D
preserves limits
of shape J
.
If F : Cᵒᵖ ⥤ D
preserves colimits of shape Jᵒᵖ
, then F.rightOp : C ⥤ Dᵒᵖ
preserves limits
of shape J
.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of shape Jᵒᵖ
, then F.unop : C ⥤ D
preserves limits of
shape J
.
If F : C ⥤ D
preserves limits of shape Jᵒᵖ
, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of
shape J
.
If F : C ⥤ Dᵒᵖ
preserves limits of shape Jᵒᵖ
, then F.leftOp : Cᵒᵖ ⥤ D
preserves colimits
of shape J
.
If F : Cᵒᵖ ⥤ D
preserves limits of shape Jᵒᵖ
, then F.rightOp : C ⥤ Dᵒᵖ
preserves colimits
of shape J
.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of shape Jᵒᵖ
, then F.unop : C ⥤ D
preserves colimits
of shape J
.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits of shape Jᵒᵖ
, then F : C ⥤ D
preserves limits
of shape J
.
If F.leftOp : Cᵒᵖ ⥤ D
preserves colimits of shape Jᵒᵖ
, then F : C ⥤ Dᵒᵖ
preserves limits
of shape J
.
If F.rightOp : C ⥤ Dᵒᵖ
preserves colimits of shape Jᵒᵖ
, then F : Cᵒᵖ ⥤ D
preserves limits
of shape J
.
If F.unop : C ⥤ D
preserves colimits of shape Jᵒᵖ
, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits
of shape J
.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits of shape Jᵒᵖ
, then F : C ⥤ D
preserves colimits
of shape J
.
If F.leftOp : Cᵒᵖ ⥤ D
preserves limits of shape Jᵒᵖ
, then F : C ⥤ Dᵒᵖ
preserves colimits
of shape J
.
If F.rightOp : C ⥤ Dᵒᵖ
preserves limits of shape Jᵒᵖ
, then F : Cᵒᵖ ⥤ D
preserves colimits
of shape J
.
If F.unop : C ⥤ D
preserves limits of shape Jᵒᵖ
, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits
of shape J
.
If F : C ⥤ D
preserves colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits.
If F : C ⥤ Dᵒᵖ
preserves colimits, then F.leftOp : Cᵒᵖ ⥤ D
preserves limits.
If F : Cᵒᵖ ⥤ D
preserves colimits, then F.rightOp : C ⥤ Dᵒᵖ
preserves limits.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits, then F.unop : C ⥤ D
preserves limits.
If F : C ⥤ D
preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits.
If F : C ⥤ Dᵒᵖ
preserves limits, then F.leftOp : Cᵒᵖ ⥤ D
preserves colimits.
If F : Cᵒᵖ ⥤ D
preserves limits, then F.rightOp : C ⥤ Dᵒᵖ
preserves colimits.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits, then F.unop : C ⥤ D
preserves colimits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits, then F : C ⥤ D
preserves limits.
If F.leftOp : Cᵒᵖ ⥤ D
preserves colimits, then F : C ⥤ Dᵒᵖ
preserves limits.
If F.rightOp : C ⥤ Dᵒᵖ
preserves colimits, then F : Cᵒᵖ ⥤ D
preserves limits.
If F.unop : C ⥤ D
preserves colimits, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits, then F : C ⥤ D
preserves colimits.
If F.leftOp : Cᵒᵖ ⥤ D
preserves limits, then F : C ⥤ Dᵒᵖ
preserves colimits.
If F.rightOp : C ⥤ Dᵒᵖ
preserves limits, then F : Cᵒᵖ ⥤ D
preserves colimits.
If F.unop : C ⥤ D
preserves limits, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits.
If F : C ⥤ D
preserves colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits.
If F : C ⥤ Dᵒᵖ
preserves colimits, then F.leftOp : Cᵒᵖ ⥤ D
preserves limits.
If F : Cᵒᵖ ⥤ D
preserves colimits, then F.rightOp : C ⥤ Dᵒᵖ
preserves limits.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits, then F.unop : C ⥤ D
preserves limits.
If F : C ⥤ D
preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits.
Alias of CategoryTheory.Limits.preservesColimits_op
.
If F : C ⥤ D
preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits.
If F : C ⥤ Dᵒᵖ
preserves limits, then F.leftOp : Cᵒᵖ ⥤ D
preserves colimits.
If F : Cᵒᵖ ⥤ D
preserves limits, then F.rightOp : C ⥤ Dᵒᵖ
preserves colimits.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits, then F.unop : C ⥤ D
preserves colimits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits, then F : C ⥤ D
preserves limits.
If F.leftOp : Cᵒᵖ ⥤ D
preserves colimits, then F : C ⥤ Dᵒᵖ
preserves limits.
If F.rightOp : C ⥤ Dᵒᵖ
preserves colimits, then F : Cᵒᵖ ⥤ D
preserves limits.
If F.unop : C ⥤ D
preserves colimits, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves limits, then F : C ⥤ D
preserves colimits.
If F.leftOp : Cᵒᵖ ⥤ D
preserves limits, then F : C ⥤ Dᵒᵖ
preserves colimits.
If F.rightOp : C ⥤ Dᵒᵖ
preserves limits, then F : Cᵒᵖ ⥤ D
preserves colimits.
If F.unop : C ⥤ D
preserves limits, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves colimits.
If F : C ⥤ D
preserves finite colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite
limits.
If F : C ⥤ Dᵒᵖ
preserves finite colimits, then F.leftOp : Cᵒᵖ ⥤ D
preserves finite
limits.
If F : Cᵒᵖ ⥤ D
preserves finite colimits, then F.rightOp : C ⥤ Dᵒᵖ
preserves finite
limits.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite colimits, then F.unop : C ⥤ D
preserves finite
limits.
If F : C ⥤ D
preserves finite limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite
colimits.
If F : C ⥤ Dᵒᵖ
preserves finite limits, then F.leftOp : Cᵒᵖ ⥤ D
preserves finite
colimits.
If F : Cᵒᵖ ⥤ D
preserves finite limits, then F.rightOp : C ⥤ Dᵒᵖ
preserves finite
colimits.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite limits, then F.unop : C ⥤ D
preserves finite
colimits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite colimits, then F : C ⥤ D
preserves finite limits.
If F.leftOp : Cᵒᵖ ⥤ D
preserves finite colimits, then F : C ⥤ Dᵒᵖ
preserves finite
limits.
If F.rightOp : C ⥤ Dᵒᵖ
preserves finite colimits, then F : Cᵒᵖ ⥤ D
preserves finite
limits.
If F.unop : C ⥤ D
preserves finite colimits, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite limits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite limits, then F : C ⥤ D
preserves finite colimits.
If F.leftOp : Cᵒᵖ ⥤ D
preserves finite limits, then F : C ⥤ Dᵒᵖ
preserves finite
colimits.
If F.rightOp : C ⥤ Dᵒᵖ
preserves finite limits, then F : Cᵒᵖ ⥤ D
preserves finite
colimits.
If F.unop : C ⥤ D
preserves finite limits, then F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite colimits.
If F : C ⥤ D
preserves finite coproducts, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite
products.
If F : C ⥤ Dᵒᵖ
preserves finite coproducts, then F.leftOp : Cᵒᵖ ⥤ D
preserves finite
products.
If F : Cᵒᵖ ⥤ D
preserves finite coproducts, then F.rightOp : C ⥤ Dᵒᵖ
preserves finite
products.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite coproducts, then F.unop : C ⥤ D
preserves finite
products.
If F : C ⥤ D
preserves finite products, then F.op : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite
coproducts.
If F : C ⥤ Dᵒᵖ
preserves finite products, then F.leftOp : Cᵒᵖ ⥤ D
preserves finite
coproducts.
If F : Cᵒᵖ ⥤ D
preserves finite products, then F.rightOp : C ⥤ Dᵒᵖ
preserves finite
coproducts.
If F : Cᵒᵖ ⥤ Dᵒᵖ
preserves finite products, then F.unop : C ⥤ D
preserves finite
coproducts.