Documentation

Mathlib.CategoryTheory.Limits.Shapes.CommSq

Pullback and pushout squares, and bicartesian squares #

We provide another API for pullbacks and pushouts.

IsPullback fst snd f g is the proposition that

  P --fst--> X
  |          |
 snd         f
  |          |
  v          v
  Y ---g---> Z

is a pullback square.

(And similarly for IsPushout.)

We provide the glue to go back and forth to the usual IsLimit API for pullbacks, and prove IsPullback (pullback.fst : pullback f g ⟶ X) (pullback.snd : pullback f g ⟶ Y) f g for the usual pullback f g provided by the HasLimit API.

We don't attempt to restate everything we know about pullbacks in this language, but do restate the pasting lemmas.

We define bicartesian squares, and show that the pullback and pushout squares for a biproduct are bicartesian.

def CategoryTheory.CommSq.cone {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :

The (not necessarily limiting) PullbackCone h i implicit in the statement that we have CommSq f g h i.

Equations
Instances For
    def CategoryTheory.CommSq.cocone {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :

    The (not necessarily limiting) PushoutCocone f g implicit in the statement that we have CommSq f g h i.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.CommSq.cone_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :
      @[simp]
      theorem CategoryTheory.CommSq.cone_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :
      @[simp]
      theorem CategoryTheory.CommSq.cocone_inl {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :
      @[simp]
      theorem CategoryTheory.CommSq.cocone_inr {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :

      The pushout cocone in the opposite category associated to the cone of a commutative square identifies to the cocone of the flipped commutative square in the opposite category

      Equations
      Instances For

        The pullback cone in the opposite category associated to the cocone of a commutative square identifies to the cone of the flipped commutative square in the opposite category

        Equations
        Instances For

          The pushout cocone obtained from the pullback cone associated to a commutative square in the opposite category identifies to the cocone associated to the flipped square.

          Equations
          Instances For

            The pullback cone obtained from the pushout cone associated to a commutative square in the opposite category identifies to the cone associated to the flipped square.

            Equations
            Instances For
              structure CategoryTheory.IsPullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} (fst : P X) (snd : P Y) (f : X Z) (g : Y Z) extends CategoryTheory.CommSq :

              The proposition that a square

                P --fst--> X
                |          |
               snd         f
                |          |
                v          v
                Y ---g---> Z
              
              

              is a pullback square. (Also known as a fibered product or cartesian square.)

              Instances For
                structure CategoryTheory.IsPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} (f : Z X) (g : Z Y) (inl : X P) (inr : Y P) extends CategoryTheory.CommSq :

                The proposition that a square

                  Z ---f---> X
                  |          |
                  g         inl
                  |          |
                  v          v
                  Y --inr--> P
                
                

                is a pushout square. (Also known as a fiber coproduct or cocartesian square.)

                Instances For
                  structure CategoryTheory.BicartesianSq {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} (f : W X) (g : W Y) (h : X Z) (i : Y Z) extends CategoryTheory.IsPullback :

                  A bicartesian square is a commutative square

                    W ---f---> X
                    |          |
                    g          h
                    |          |
                    v          v
                    Y ---i---> Z
                  
                  

                  that is both a pullback square and a pushout square.

                  Instances For

                    We begin by providing some glue between IsPullback and the IsLimit and HasLimit APIs. (And similarly for IsPushout.)

                    def CategoryTheory.IsPullback.cone {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :

                    The (limiting) PullbackCone f g implicit in the statement that we have an IsPullback fst snd f g.

                    Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.IsPullback.cone_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                      @[simp]
                      theorem CategoryTheory.IsPullback.cone_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                      noncomputable def CategoryTheory.IsPullback.isLimit {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :

                      The cone obtained from IsPullback fst snd f g is a limit cone.

                      Equations
                      Instances For
                        theorem CategoryTheory.IsPullback.of_isLimit' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (w : CategoryTheory.CommSq fst snd f g) (h : CategoryTheory.Limits.IsLimit (CategoryTheory.CommSq.cone w)) :

                        A variant of of_isLimit that is more useful with apply.

                        theorem CategoryTheory.IsPullback.of_hasPullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : Y Z) [CategoryTheory.Limits.HasPullback f g] :
                        CategoryTheory.IsPullback CategoryTheory.Limits.pullback.fst CategoryTheory.Limits.pullback.snd f g

                        The pullback provided by HasPullback f g fits into an IsPullback.

                        noncomputable def CategoryTheory.IsPullback.isoPullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) [CategoryTheory.Limits.HasPullback f g] :

                        Any object at the top left of a pullback square is isomorphic to the pullback provided by the HasLimit API.

                        Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.IsPullback.isoPullback_hom_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) [CategoryTheory.Limits.HasPullback f g] :
                          CategoryTheory.CategoryStruct.comp (CategoryTheory.IsPullback.isoPullback h).hom CategoryTheory.Limits.pullback.fst = fst
                          @[simp]
                          theorem CategoryTheory.IsPullback.isoPullback_hom_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) [CategoryTheory.Limits.HasPullback f g] :
                          CategoryTheory.CategoryStruct.comp (CategoryTheory.IsPullback.isoPullback h).hom CategoryTheory.Limits.pullback.snd = snd
                          @[simp]
                          theorem CategoryTheory.IsPullback.isoPullback_inv_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) [CategoryTheory.Limits.HasPullback f g] :
                          CategoryTheory.CategoryStruct.comp (CategoryTheory.IsPullback.isoPullback h).inv fst = CategoryTheory.Limits.pullback.fst
                          @[simp]
                          theorem CategoryTheory.IsPullback.isoPullback_inv_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) [CategoryTheory.Limits.HasPullback f g] :
                          CategoryTheory.CategoryStruct.comp (CategoryTheory.IsPullback.isoPullback h).inv snd = CategoryTheory.Limits.pullback.snd
                          theorem CategoryTheory.IsPullback.of_iso_pullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.CommSq fst snd f g) [CategoryTheory.Limits.HasPullback f g] (i : P CategoryTheory.Limits.pullback f g) (w₁ : CategoryTheory.CategoryStruct.comp i.hom CategoryTheory.Limits.pullback.fst = fst) (w₂ : CategoryTheory.CategoryStruct.comp i.hom CategoryTheory.Limits.pullback.snd = snd) :
                          theorem CategoryTheory.IsPullback.of_horiz_isIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} [CategoryTheory.IsIso fst] [CategoryTheory.IsIso g] (sq : CategoryTheory.CommSq fst snd f g) :
                          def CategoryTheory.IsPushout.cocone {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :

                          The (colimiting) PushoutCocone f g implicit in the statement that we have an IsPushout f g inl inr.

                          Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.IsPushout.cocone_inl {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                            @[simp]
                            theorem CategoryTheory.IsPushout.cocone_inr {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                            noncomputable def CategoryTheory.IsPushout.isColimit {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :

                            The cocone obtained from IsPushout f g inl inr is a colimit cocone.

                            Equations
                            Instances For
                              theorem CategoryTheory.IsPushout.of_isColimit' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (w : CategoryTheory.CommSq f g inl inr) (h : CategoryTheory.Limits.IsColimit (CategoryTheory.CommSq.cocone w)) :

                              A variant of of_isColimit that is more useful with apply.

                              theorem CategoryTheory.IsPushout.of_hasPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} (f : Z X) (g : Z Y) [CategoryTheory.Limits.HasPushout f g] :
                              CategoryTheory.IsPushout f g CategoryTheory.Limits.pushout.inl CategoryTheory.Limits.pushout.inr

                              The pushout provided by HasPushout f g fits into an IsPushout.

                              noncomputable def CategoryTheory.IsPushout.isoPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) [CategoryTheory.Limits.HasPushout f g] :

                              Any object at the top left of a pullback square is isomorphic to the pullback provided by the HasLimit API.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.IsPushout.inl_isoPushout_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) [CategoryTheory.Limits.HasPushout f g] :
                                CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.pushout.inl (CategoryTheory.IsPushout.isoPushout h).inv = inl
                                @[simp]
                                theorem CategoryTheory.IsPushout.inr_isoPushout_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) [CategoryTheory.Limits.HasPushout f g] :
                                CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.pushout.inr (CategoryTheory.IsPushout.isoPushout h).inv = inr
                                @[simp]
                                theorem CategoryTheory.IsPushout.inl_isoPushout_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) [CategoryTheory.Limits.HasPushout f g] :
                                CategoryTheory.CategoryStruct.comp inl (CategoryTheory.IsPushout.isoPushout h).hom = CategoryTheory.Limits.pushout.inl
                                @[simp]
                                theorem CategoryTheory.IsPushout.inr_isoPushout_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) [CategoryTheory.Limits.HasPushout f g] :
                                CategoryTheory.CategoryStruct.comp inr (CategoryTheory.IsPushout.isoPushout h).hom = CategoryTheory.Limits.pushout.inr
                                theorem CategoryTheory.IsPushout.of_iso_pushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.CommSq f g inl inr) [CategoryTheory.Limits.HasPushout f g] (i : P CategoryTheory.Limits.pushout f g) (w₁ : CategoryTheory.CategoryStruct.comp inl i.hom = CategoryTheory.Limits.pushout.inl) (w₂ : CategoryTheory.CategoryStruct.comp inr i.hom = CategoryTheory.Limits.pushout.inr) :
                                theorem CategoryTheory.IsPullback.flip {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                                theorem CategoryTheory.IsPullback.flip_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} :
                                @[simp]

                                The square with 0 : 0 ⟶ 0 on the left and 𝟙 X on the right is a pullback square.

                                @[simp]

                                The square with 0 : 0 ⟶ 0 on the top and 𝟙 X on the bottom is a pullback square.

                                @[simp]

                                The square with 0 : 0 ⟶ 0 on the right and 𝟙 X on the left is a pullback square.

                                @[simp]

                                The square with 0 : 0 ⟶ 0 on the bottom and 𝟙 X on the top is a pullback square.

                                theorem CategoryTheory.IsPullback.paste_vert {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₂₁ : C} {X₂₂ : C} {X₃₁ : C} {X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁) (t : CategoryTheory.IsPullback h₂₁ v₂₁ v₂₂ h₃₁) :

                                Paste two pullback squares "vertically" to obtain another pullback square.

                                theorem CategoryTheory.IsPullback.paste_horiz {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₁₃ : C} {X₂₁ : C} {X₂₂ : C} {X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁) (t : CategoryTheory.IsPullback h₁₂ v₁₂ v₁₃ h₂₂) :

                                Paste two pullback squares "horizontally" to obtain another pullback square.

                                theorem CategoryTheory.IsPullback.of_bot {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₂₁ : C} {X₂₂ : C} {X₃₁ : C} {X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPullback h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁) (p : CategoryTheory.CategoryStruct.comp h₁₁ v₁₂ = CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) (t : CategoryTheory.IsPullback h₂₁ v₂₁ v₂₂ h₃₁) :
                                CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁

                                Given a pullback square assembled from a commuting square on the top and a pullback square on the bottom, the top square is a pullback square.

                                theorem CategoryTheory.IsPullback.of_right {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₁₃ : C} {X₂₁ : C} {X₂₂ : C} {X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPullback (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂)) (p : CategoryTheory.CategoryStruct.comp h₁₁ v₁₂ = CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) (t : CategoryTheory.IsPullback h₁₂ v₁₂ v₁₃ h₂₂) :
                                CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁

                                Given a pullback square assembled from a commuting square on the left and a pullback square on the right, the left square is a pullback square.

                                theorem CategoryTheory.IsPullback.paste_vert_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₂₁ : C} {X₂₂ : C} {X₃₁ : C} {X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPullback h₂₁ v₂₁ v₂₂ h₃₁) (e : CategoryTheory.CategoryStruct.comp h₁₁ v₁₂ = CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) :
                                CategoryTheory.IsPullback h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁ CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁
                                theorem CategoryTheory.IsPullback.paste_horiz_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₁₃ : C} {X₂₁ : C} {X₂₂ : C} {X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPullback h₁₂ v₁₂ v₁₃ h₂₂) (e : CategoryTheory.CategoryStruct.comp h₁₁ v₁₂ = CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) :
                                CategoryTheory.IsPullback (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂) CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁
                                @[simp]

                                The square

                                  X --inl--> X ⊞ Y
                                  |            |
                                  0           snd
                                  |            |
                                  v            v
                                  0 ---0-----> Y
                                

                                is a pullback square.

                                @[simp]

                                The square

                                  Y --inr--> X ⊞ Y
                                  |            |
                                  0           fst
                                  |            |
                                  v            v
                                  0 ---0-----> X
                                

                                is a pullback square.

                                The pullback of biprod.inl and biprod.inr is the zero object.

                                Equations
                                Instances For
                                  theorem CategoryTheory.IsPullback.op {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                                  CategoryTheory.IsPushout g.op f.op snd.op fst.op
                                  theorem CategoryTheory.IsPullback.unop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : Cᵒᵖ} {X : Cᵒᵖ} {Y : Cᵒᵖ} {Z : Cᵒᵖ} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                                  CategoryTheory.IsPushout g.unop f.unop snd.unop fst.unop
                                  theorem CategoryTheory.IsPullback.of_vert_isIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} {X : C} {Y : C} {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} [CategoryTheory.IsIso snd] [CategoryTheory.IsIso f] (sq : CategoryTheory.CommSq fst snd f g) :
                                  theorem CategoryTheory.IsPushout.flip {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                                  theorem CategoryTheory.IsPushout.flip_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} :
                                  @[simp]

                                  The square with 0 : 0 ⟶ 0 on the right and 𝟙 X on the left is a pushout square.

                                  @[simp]

                                  The square with 0 : 0 ⟶ 0 on the bottom and 𝟙 X on the top is a pushout square.

                                  @[simp]

                                  The square with 0 : 0 ⟶ 0 on the right left 𝟙 X on the right is a pushout square.

                                  @[simp]

                                  The square with 0 : 0 ⟶ 0 on the top and 𝟙 X on the bottom is a pushout square.

                                  theorem CategoryTheory.IsPushout.paste_vert {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₂₁ : C} {X₂₂ : C} {X₃₁ : C} {X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) (t : CategoryTheory.IsPushout h₂₁ v₂₁ v₂₂ h₃₁) :

                                  Paste two pushout squares "vertically" to obtain another pushout square.

                                  theorem CategoryTheory.IsPushout.paste_horiz {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₁₃ : C} {X₂₁ : C} {X₂₂ : C} {X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) (t : CategoryTheory.IsPushout h₁₂ v₁₂ v₁₃ h₂₂) :

                                  Paste two pushout squares "horizontally" to obtain another pushout square.

                                  theorem CategoryTheory.IsPushout.of_bot {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₂₁ : C} {X₂₂ : C} {X₃₁ : C} {X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPushout h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁) (p : CategoryTheory.CategoryStruct.comp h₂₁ v₂₂ = CategoryTheory.CategoryStruct.comp v₂₁ h₃₁) (t : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) :
                                  CategoryTheory.IsPushout h₂₁ v₂₁ v₂₂ h₃₁

                                  Given a pushout square assembled from a pushout square on the top and a commuting square on the bottom, the bottom square is a pushout square.

                                  theorem CategoryTheory.IsPushout.of_right {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₁₃ : C} {X₂₁ : C} {X₂₂ : C} {X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPushout (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂)) (p : CategoryTheory.CategoryStruct.comp h₁₂ v₁₃ = CategoryTheory.CategoryStruct.comp v₁₂ h₂₂) (t : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) :
                                  CategoryTheory.IsPushout h₁₂ v₁₂ v₁₃ h₂₂

                                  Given a pushout square assembled from a pushout square on the left and a commuting square on the right, the right square is a pushout square.

                                  theorem CategoryTheory.IsPushout.paste_vert_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₂₁ : C} {X₂₂ : C} {X₃₁ : C} {X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) (e : CategoryTheory.CategoryStruct.comp h₂₁ v₂₂ = CategoryTheory.CategoryStruct.comp v₂₁ h₃₁) :
                                  CategoryTheory.IsPushout h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁ CategoryTheory.IsPushout h₂₁ v₂₁ v₂₂ h₃₁
                                  theorem CategoryTheory.IsPushout.paste_horiz_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ : C} {X₁₂ : C} {X₁₃ : C} {X₂₁ : C} {X₂₂ : C} {X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) (e : CategoryTheory.CategoryStruct.comp h₁₂ v₁₃ = CategoryTheory.CategoryStruct.comp v₁₂ h₂₂) :
                                  CategoryTheory.IsPushout (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂) CategoryTheory.IsPushout h₁₂ v₁₂ v₁₃ h₂₂

                                  The square

                                    X --inl--> X ⊞ Y
                                    |            |
                                    0           snd
                                    |            |
                                    v            v
                                    0 ---0-----> Y
                                  

                                  is a pushout square.

                                  The square

                                    Y --inr--> X ⊞ Y
                                    |            |
                                    0           fst
                                    |            |
                                    v            v
                                    0 ---0-----> X
                                  

                                  is a pushout square.

                                  The pushout of biprod.fst and biprod.snd is the zero object.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    theorem CategoryTheory.IsPushout.op {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                                    CategoryTheory.IsPullback inr.op inl.op g.op f.op
                                    theorem CategoryTheory.IsPushout.unop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : Cᵒᵖ} {X : Cᵒᵖ} {Y : Cᵒᵖ} {P : Cᵒᵖ} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                                    CategoryTheory.IsPullback inr.unop inl.unop g.unop f.unop
                                    theorem CategoryTheory.IsPushout.of_horiz_isIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} [CategoryTheory.IsIso f] [CategoryTheory.IsIso inr] (sq : CategoryTheory.CommSq f g inl inr) :
                                    theorem CategoryTheory.IsPushout.of_vert_isIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} {X : C} {Y : C} {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} [CategoryTheory.IsIso g] [CategoryTheory.IsIso inl] (sq : CategoryTheory.CommSq f g inl inr) :
                                    noncomputable def CategoryTheory.IsPullback.isLimitFork {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : Y Z} {g' : Y Z} (H : CategoryTheory.IsPullback f f g g') :

                                    If f : X ⟶ Y, g g' : Y ⟶ Z forms a pullback square, then f is the equalizer of g and g'.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      noncomputable def CategoryTheory.IsPushout.isLimitFork {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} {f : X Y} {f' : X Y} {g : Y Z} (H : CategoryTheory.IsPushout f f' g g) :

                                      If f f' : X ⟶ Y, g : Y ⟶ Z forms a pushout square, then g is the coequalizer of f and f'.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        theorem CategoryTheory.BicartesianSq.of_isPullback_isPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p₁ : CategoryTheory.IsPullback f g h i) (p₂ : CategoryTheory.IsPushout f g h i) :
                                        theorem CategoryTheory.BicartesianSq.flip {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p : CategoryTheory.BicartesianSq f g h i) :
                                        @[simp]
                                         X ⊞ Y --fst--> X
                                           |            |
                                          snd           0
                                           |            |
                                           v            v
                                           Y -----0---> 0
                                        

                                        is a bicartesian square.

                                        @[simp]
                                           0 -----0---> X
                                           |            |
                                           0           inl
                                           |            |
                                           v            v
                                           Y --inr--> X ⊞ Y
                                        

                                        is a bicartesian square.

                                        theorem CategoryTheory.Functor.map_isPullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} [CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan h i) F] (s : CategoryTheory.IsPullback f g h i) :
                                        CategoryTheory.IsPullback (F.map f) (F.map g) (F.map h) (F.map i)
                                        theorem CategoryTheory.Functor.map_isPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} [CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) F] (s : CategoryTheory.IsPushout f g h i) :
                                        CategoryTheory.IsPushout (F.map f) (F.map g) (F.map h) (F.map i)
                                        theorem CategoryTheory.IsPullback.map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} [CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan h i) F] (s : CategoryTheory.IsPullback f g h i) :
                                        CategoryTheory.IsPullback (F.map f) (F.map g) (F.map h) (F.map i)

                                        Alias of CategoryTheory.Functor.map_isPullback.

                                        theorem CategoryTheory.IsPushout.map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {W : C} {X : C} {Y : C} {Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} [CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) F] (s : CategoryTheory.IsPushout f g h i) :
                                        CategoryTheory.IsPushout (F.map f) (F.map g) (F.map h) (F.map i)

                                        Alias of CategoryTheory.Functor.map_isPushout.