Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Cospan

Cospan & Span #

We define a category WalkingCospan (resp. WalkingSpan), which is the index category for the given data for a pullback (resp. pushout) diagram. Convenience methods cospan f g and span f g construct functors from the walking (co)span, hitting the given morphisms.

References #

@[reducible, inline]

The type of objects for the diagram indexing a pullback, defined as a special case of WidePullbackShape.

Equations
Instances For
    @[reducible, match_pattern, inline]

    The central point of the walking cospan.

    Equations
    Instances For
      @[reducible, inline]

      The type of objects for the diagram indexing a pushout, defined as a special case of WidePushoutShape.

      Equations
      Instances For
        @[reducible, match_pattern, inline]

        The central point of the walking span.

        Equations
        Instances For
          @[reducible, inline]

          The type of arrows for the diagram indexing a pullback.

          Equations
          Instances For
            @[reducible, match_pattern, inline]

            The identity arrows of the walking cospan.

            Equations
            Instances For
              @[reducible, inline]

              The type of arrows for the diagram indexing a pushout.

              Equations
              Instances For
                @[reducible, match_pattern, inline]

                The identity arrows of the walking span.

                Equations
                Instances For

                  To construct an isomorphism of cones over the walking cospan, it suffices to construct an isomorphism of the cone points and check it commutes with the legs to left and right.

                  Equations
                  Instances For

                    To construct an isomorphism of cocones over the walking span, it suffices to construct an isomorphism of the cocone points and check it commutes with the legs from left and right.

                    Equations
                    Instances For

                      cospan f g is the functor from the walking cospan hitting f and g.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        span f g is the functor from the walking span hitting f and g.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          A functor applied to a cospan is a cospan.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            A functor applied to a span is a span.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              def CategoryTheory.Limits.cospanExt {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :

                              Construct an isomorphism of cospans from components.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_app_one {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_hom_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_hom_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_hom_app_one {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_inv_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_inv_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                @[simp]
                                theorem CategoryTheory.Limits.cospanExt_inv_app_one {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                def CategoryTheory.Limits.spanExt {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :

                                Construct an isomorphism of spans from components.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_app_one {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_hom_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_hom_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_hom_app_zero {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_inv_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_inv_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
                                  @[simp]
                                  theorem CategoryTheory.Limits.spanExt_inv_app_zero {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z X' Y' Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :