Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.IsPullback.Kernels

Horizontal maps in a pullback square have the same kernel #

Consider a commutative square:

    t
 X₁ --> X₂
l|      |r
 v      v
 X₃ --> X₄
    b

(Similar results for the (co)kernels of the vertical maps can be obtained by applying these results to the flipped square.)

theorem CategoryTheory.Limits.isIso_kernel_map_of_isPullback {C : Type u_1} [Category.{v_1, u_1} C] [HasZeroMorphisms C] {X₁ X₂ X₃ X₄ : C} {t : X₁ X₂} {l : X₁ X₃} {r : X₂ X₄} {b : X₃ X₄} [HasKernel t] [HasKernel b] (sq : IsPullback t l r b) :
IsIso (kernel.map t b l r )
theorem CategoryTheory.Limits.isIso_cokernel_map_of_isPushout {C : Type u_1} [Category.{v_1, u_1} C] [HasZeroMorphisms C] {X₁ X₂ X₃ X₄ : C} {t : X₁ X₂} {l : X₁ X₃} {r : X₂ X₄} {b : X₃ X₄} [HasCokernel t] [HasCokernel b] (sq : IsPushout t l r b) :
IsIso (cokernel.map t b l r )