Documentation

Mathlib.CategoryTheory.Limits.Shapes.WidePullbacks

Wide pullbacks #

We define the category WidePullbackShape, (resp. WidePushoutShape) which is the category obtained from a discrete category of type J by adjoining a terminal (resp. initial) element. Limits of this shape are wide pullbacks (pushouts). The convenience method wideCospan (wideSpan) constructs a functor from this category, hitting the given morphisms.

We use WidePullbackShape to define ordinary pullbacks (pushouts) by using J := WalkingPair, which allows easy proofs of some related lemmas. Furthermore, wide pullbacks are used to show the existence of limits in the slice category. Namely, if C has wide pullbacks then C/B has limits for any object B in C.

Typeclasses HasWidePullbacks and HasFiniteWidePullbacks assert the existence of wide pullbacks and finite wide pullbacks.

A wide pullback shape for any type J can be written simply as Option J.

Equations
Instances For

    A wide pushout shape for any type J can be written simply as Option J.

    Equations
    Instances For

      The type of arrows for the shape indexing a wide pullback.

      Instances For
        Equations
        • One or more equations did not get rendered due to their size.

        An aesop tactic for bulk cases on morphisms in WidePushoutShape

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def CategoryTheory.Limits.WidePullbackShape.wideCospan {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) :

          Construct a functor out of the wide pullback shape given a J-indexed collection of arrows to a fixed object.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Limits.WidePullbackShape.wideCospan_obj {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) (j : WidePullbackShape J) :
            (wideCospan B objs arrows).obj j = Option.casesOn j B objs
            @[simp]
            theorem CategoryTheory.Limits.WidePullbackShape.wideCospan_map {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) {X✝ Y✝ : WidePullbackShape J} (f : X✝ Y✝) :
            (wideCospan B objs arrows).map f = Hom.casesOn (motive := fun (a a_1 : WidePullbackShape J) (t : a.Hom a_1) => X✝ = aY✝ = a_1HEq f t((fun (j : WidePullbackShape J) => Option.casesOn j B objs) X✝ (fun (j : WidePullbackShape J) => Option.casesOn j B objs) Y✝)) f (fun (X : WidePullbackShape J) (h : X✝ = X) => Eq.ndrec (motive := fun (X : WidePullbackShape J) => Y✝ = XHEq f (Hom.id X)((fun (j : WidePullbackShape J) => Option.casesOn j B objs) X✝ (fun (j : WidePullbackShape J) => Option.casesOn j B objs) Y✝)) (fun (h : Y✝ = X✝) => Eq.ndrec (motive := fun {Y : WidePullbackShape J} => (f : X✝ Y) → HEq f (Hom.id X✝)((fun (j : WidePullbackShape J) => Option.casesOn j B objs) X✝ (fun (j : WidePullbackShape J) => Option.casesOn j B objs) Y)) (fun (f : X✝ X✝) (h : HEq f (Hom.id X✝)) => CategoryStruct.id ((fun (j : WidePullbackShape J) => Option.casesOn j B objs) X✝)) f) h) (fun (j : J) (h : X✝ = some j) => Eq.ndrec (motive := fun {X : WidePullbackShape J} => (f : X Y✝) → Y✝ = noneHEq f (Hom.term j)((fun (j : WidePullbackShape J) => Option.casesOn j B objs) X (fun (j : WidePullbackShape J) => Option.casesOn j B objs) Y✝)) (fun (f : some j Y✝) (h : Y✝ = none) => Eq.ndrec (motive := fun {Y : WidePullbackShape J} => (f : some j Y) → HEq f (Hom.term j)((fun (j : WidePullbackShape J) => Option.casesOn j B objs) (some j) (fun (j : WidePullbackShape J) => Option.casesOn j B objs) Y)) (fun (f : some j none) (h : HEq f (Hom.term j)) => arrows j) f) f)
            def CategoryTheory.Limits.WidePullbackShape.diagramIsoWideCospan {J : Type w} {C : Type u} [Category.{v, u} C] (F : Functor (WidePullbackShape J) C) :
            F wideCospan (F.obj none) (fun (j : J) => F.obj (some j)) fun (j : J) => F.map (Hom.term j)

            Every diagram is naturally isomorphic (actually, equal) to a wideCospan

            Equations
            Instances For
              def CategoryTheory.Limits.WidePullbackShape.mkCone {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePullbackShape J) C} {X : C} (f : X F.obj none) (π : (j : J) → X F.obj (some j)) (w : ∀ (j : J), CategoryStruct.comp (π j) (F.map (Hom.term j)) = f) :

              Construct a cone over a wide cospan.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.Limits.WidePullbackShape.mkCone_π_app {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePullbackShape J) C} {X : C} (f : X F.obj none) (π : (j : J) → X F.obj (some j)) (w : ∀ (j : J), CategoryStruct.comp (π j) (F.map (Hom.term j)) = f) (j : WidePullbackShape J) :
                (mkCone f π w).app j = match j with | none => f | some j => π j
                @[simp]
                theorem CategoryTheory.Limits.WidePullbackShape.mkCone_pt {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePullbackShape J) C} {X : C} (f : X F.obj none) (π : (j : J) → X F.obj (some j)) (w : ∀ (j : J), CategoryStruct.comp (π j) (F.map (Hom.term j)) = f) :
                (mkCone f π w).pt = X

                Wide pullback diagrams of equivalent index types are equivalent.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Lifting universe and morphism levels preserves wide pullback diagrams.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The type of arrows for the shape indexing a wide pushout.

                    Instances For
                      Equations
                      • One or more equations did not get rendered due to their size.

                      An aesop tactic for bulk cases on morphisms in WidePushoutShape

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        def CategoryTheory.Limits.WidePushoutShape.wideSpan {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) :

                        Construct a functor out of the wide pushout shape given a J-indexed collection of arrows from a fixed object.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Limits.WidePushoutShape.wideSpan_map {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) {X✝ Y✝ : WidePushoutShape J} (f : X✝ Y✝) :
                          (wideSpan B objs arrows).map f = Hom.casesOn (motive := fun (a a_1 : WidePushoutShape J) (t : a.Hom a_1) => X✝ = aY✝ = a_1HEq f t((fun (j : WidePushoutShape J) => Option.casesOn j B objs) X✝ (fun (j : WidePushoutShape J) => Option.casesOn j B objs) Y✝)) f (fun (X : WidePushoutShape J) (h : X✝ = X) => Eq.ndrec (motive := fun (X : WidePushoutShape J) => Y✝ = XHEq f (Hom.id X)((fun (j : WidePushoutShape J) => Option.casesOn j B objs) X✝ (fun (j : WidePushoutShape J) => Option.casesOn j B objs) Y✝)) (fun (h : Y✝ = X✝) => Eq.ndrec (motive := fun {Y : WidePushoutShape J} => (f : X✝ Y) → HEq f (Hom.id X✝)((fun (j : WidePushoutShape J) => Option.casesOn j B objs) X✝ (fun (j : WidePushoutShape J) => Option.casesOn j B objs) Y)) (fun (f : X✝ X✝) (h : HEq f (Hom.id X✝)) => CategoryStruct.id ((fun (j : WidePushoutShape J) => Option.casesOn j B objs) X✝)) f) h) (fun (j : J) (h : X✝ = none) => Eq.ndrec (motive := fun {X : WidePushoutShape J} => (f : X Y✝) → Y✝ = some jHEq f (Hom.init j)((fun (j : WidePushoutShape J) => Option.casesOn j B objs) X (fun (j : WidePushoutShape J) => Option.casesOn j B objs) Y✝)) (fun (f : none Y✝) (h : Y✝ = some j) => Eq.ndrec (motive := fun {Y : WidePushoutShape J} => (f : none Y) → HEq f (Hom.init j)((fun (j : WidePushoutShape J) => Option.casesOn j B objs) none (fun (j : WidePushoutShape J) => Option.casesOn j B objs) Y)) (fun (f : none some j) (h : HEq f (Hom.init j)) => arrows j) f) f)
                          @[simp]
                          theorem CategoryTheory.Limits.WidePushoutShape.wideSpan_obj {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) (j : WidePushoutShape J) :
                          (wideSpan B objs arrows).obj j = Option.casesOn j B objs
                          def CategoryTheory.Limits.WidePushoutShape.diagramIsoWideSpan {J : Type w} {C : Type u} [Category.{v, u} C] (F : Functor (WidePushoutShape J) C) :
                          F wideSpan (F.obj none) (fun (j : J) => F.obj (some j)) fun (j : J) => F.map (Hom.init j)

                          Every diagram is naturally isomorphic (actually, equal) to a wideSpan

                          Equations
                          Instances For
                            def CategoryTheory.Limits.WidePushoutShape.mkCocone {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePushoutShape J) C} {X : C} (f : F.obj none X) (ι : (j : J) → F.obj (some j) X) (w : ∀ (j : J), CategoryStruct.comp (F.map (Hom.init j)) (ι j) = f) :

                            Construct a cocone over a wide span.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Limits.WidePushoutShape.mkCocone_ι_app {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePushoutShape J) C} {X : C} (f : F.obj none X) (ι : (j : J) → F.obj (some j) X) (w : ∀ (j : J), CategoryStruct.comp (F.map (Hom.init j)) (ι j) = f) (j : WidePushoutShape J) :
                              (mkCocone f ι w).app j = match j with | none => f | some j => ι j
                              @[simp]
                              theorem CategoryTheory.Limits.WidePushoutShape.mkCocone_pt {J : Type w} {C : Type u} [Category.{v, u} C] {F : Functor (WidePushoutShape J) C} {X : C} (f : F.obj none X) (ι : (j : J) → F.obj (some j) X) (w : ∀ (j : J), CategoryStruct.comp (F.map (Hom.init j)) (ι j) = f) :
                              (mkCocone f ι w).pt = X

                              Wide pushout diagrams of equivalent index types are equivalent.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                Lifting universe and morphism levels preserves wide pushout diagrams.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[reducible, inline]

                                  HasWidePullbacks represents a choice of wide pullback for every collection of morphisms

                                  Equations
                                  Instances For
                                    @[reducible, inline]

                                    HasWidePushouts represents a choice of wide pushout for every collection of morphisms

                                    Equations
                                    Instances For
                                      @[reducible, inline]
                                      abbrev CategoryTheory.Limits.HasWidePullback {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) :

                                      HasWidePullback B objs arrows means that wideCospan B objs arrows has a limit.

                                      Equations
                                      Instances For
                                        @[reducible, inline]
                                        abbrev CategoryTheory.Limits.HasWidePushout {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) :

                                        HasWidePushout B objs arrows means that wideSpan B objs arrows has a colimit.

                                        Equations
                                        Instances For
                                          @[reducible, inline]
                                          noncomputable abbrev CategoryTheory.Limits.widePullback {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] :
                                          C

                                          A choice of wide pullback.

                                          Equations
                                          Instances For
                                            @[reducible, inline]
                                            noncomputable abbrev CategoryTheory.Limits.widePushout {J : Type w} {C : Type u} [Category.{v, u} C] (B : C) (objs : JC) (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] :
                                            C

                                            A choice of wide pushout.

                                            Equations
                                            Instances For
                                              @[reducible, inline]
                                              noncomputable abbrev CategoryTheory.Limits.WidePullback.π {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] (j : J) :
                                              widePullback B objs arrows objs j

                                              The j-th projection from the pullback.

                                              Equations
                                              Instances For
                                                @[reducible, inline]
                                                noncomputable abbrev CategoryTheory.Limits.WidePullback.base {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] :
                                                widePullback B objs arrows B

                                                The unique map to the base from the pullback.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Limits.WidePullback.π_arrow {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] (j : J) :
                                                  CategoryStruct.comp (π arrows j) (arrows j) = base arrows
                                                  @[simp]
                                                  theorem CategoryTheory.Limits.WidePullback.π_arrow_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] (j : J) {Z : C} (h : B Z) :
                                                  @[reducible, inline]
                                                  noncomputable abbrev CategoryTheory.Limits.WidePullback.lift {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} {arrows : (j : J) → objs j B} [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) :
                                                  X widePullback B objs arrows

                                                  Lift a collection of morphisms to a morphism to the pullback.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    theorem CategoryTheory.Limits.WidePullback.lift_π {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) (j : J) :
                                                    CategoryStruct.comp (lift f fs w) (π arrows j) = fs j
                                                    theorem CategoryTheory.Limits.WidePullback.lift_π_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) (j : J) {Z : C} (h : objs j Z) :
                                                    theorem CategoryTheory.Limits.WidePullback.lift_base {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) :
                                                    CategoryStruct.comp (lift f fs w) (base arrows) = f
                                                    theorem CategoryTheory.Limits.WidePullback.lift_base_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) {Z : C} (h : B Z) :
                                                    theorem CategoryTheory.Limits.WidePullback.eq_lift_of_comp_eq {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (f : X B) (fs : (j : J) → X objs j) (w : ∀ (j : J), CategoryStruct.comp (fs j) (arrows j) = f) (g : X widePullback B objs arrows) :
                                                    (∀ (j : J), CategoryStruct.comp g (π arrows j) = fs j)CategoryStruct.comp g (base arrows) = fg = lift f fs w
                                                    theorem CategoryTheory.Limits.WidePullback.hom_eq_lift {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (g : X widePullback B objs arrows) :
                                                    g = lift (CategoryStruct.comp g (base arrows)) (fun (j : J) => CategoryStruct.comp g (π arrows j))
                                                    theorem CategoryTheory.Limits.WidePullback.hom_ext {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → objs j B) [HasWidePullback B objs arrows] {X : C} (g1 g2 : X widePullback B objs arrows) :
                                                    (∀ (j : J), CategoryStruct.comp g1 (π arrows j) = CategoryStruct.comp g2 (π arrows j))CategoryStruct.comp g1 (base arrows) = CategoryStruct.comp g2 (base arrows)g1 = g2
                                                    @[reducible, inline]
                                                    noncomputable abbrev CategoryTheory.Limits.WidePushout.ι {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] (j : J) :
                                                    objs j widePushout B objs arrows

                                                    The j-th inclusion to the pushout.

                                                    Equations
                                                    Instances For
                                                      @[reducible, inline]
                                                      noncomputable abbrev CategoryTheory.Limits.WidePushout.head {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] :
                                                      B widePushout B objs arrows

                                                      The unique map from the head to the pushout.

                                                      Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.Limits.WidePushout.arrow_ι {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] (j : J) :
                                                        CategoryStruct.comp (arrows j) (ι arrows j) = head arrows
                                                        theorem CategoryTheory.Limits.WidePushout.arrow_ι_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] (j : J) {Z : C} (h : widePushout B objs arrows Z) :
                                                        @[reducible, inline]
                                                        noncomputable abbrev CategoryTheory.Limits.WidePushout.desc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} {arrows : (j : J) → B objs j} [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) :
                                                        widePushout B objs arrows X

                                                        Descend a collection of morphisms to a morphism from the pushout.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For
                                                          theorem CategoryTheory.Limits.WidePushout.ι_desc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) (j : J) :
                                                          CategoryStruct.comp (ι arrows j) (desc f fs w) = fs j
                                                          theorem CategoryTheory.Limits.WidePushout.ι_desc_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) (j : J) {Z : C} (h : X Z) :
                                                          theorem CategoryTheory.Limits.WidePushout.head_desc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) :
                                                          CategoryStruct.comp (head arrows) (desc f fs w) = f
                                                          theorem CategoryTheory.Limits.WidePushout.head_desc_assoc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) {Z : C} (h : X Z) :
                                                          theorem CategoryTheory.Limits.WidePushout.eq_desc_of_comp_eq {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (f : B X) (fs : (j : J) → objs j X) (w : ∀ (j : J), CategoryStruct.comp (arrows j) (fs j) = f) (g : widePushout B objs arrows X) :
                                                          (∀ (j : J), CategoryStruct.comp (ι arrows j) g = fs j)CategoryStruct.comp (head arrows) g = fg = desc f fs w
                                                          theorem CategoryTheory.Limits.WidePushout.hom_eq_desc {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (g : widePushout B objs arrows X) :
                                                          g = desc (CategoryStruct.comp (head arrows) g) (fun (j : J) => CategoryStruct.comp (ι arrows j) g)
                                                          theorem CategoryTheory.Limits.WidePushout.hom_ext {J : Type w} {C : Type u} [Category.{v, u} C] {B : C} {objs : JC} (arrows : (j : J) → B objs j) [HasWidePushout B objs arrows] {X : C} (g1 g2 : widePushout B objs arrows X) :
                                                          (∀ (j : J), CategoryStruct.comp (ι arrows j) g1 = CategoryStruct.comp (ι arrows j) g2)CategoryStruct.comp (head arrows) g1 = CategoryStruct.comp (head arrows) g2g1 = g2

                                                          The obvious functor WidePullbackShape J ⥤ (WidePushoutShape J)ᵒᵖ

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            @[simp]
                                                            theorem CategoryTheory.Limits.widePullbackShapeOp_map (J : Type w) {X₁ X₂ : WidePullbackShape J} (a✝ : X₁ X₂) :
                                                            (widePullbackShapeOp J).map a✝ = widePullbackShapeOpMap J X₁ X₂ a✝

                                                            The obvious functor WidePushoutShape J ⥤ (WidePullbackShape J)ᵒᵖ

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              @[simp]
                                                              @[simp]
                                                              theorem CategoryTheory.Limits.widePullbackShapeUnop_map (J : Type w) {X✝ Y✝ : (WidePullbackShape J)ᵒᵖ} (f : X✝ Y✝) :
                                                              @[simp]
                                                              theorem CategoryTheory.Limits.widePushoutShapeUnop_map (J : Type w) {X✝ Y✝ : (WidePushoutShape J)ᵒᵖ} (f : X✝ Y✝) :

                                                              The inverse of the unit isomorphism of the equivalence widePushoutShapeOpEquiv : (WidePushoutShape J)ᵒᵖ ≌ WidePullbackShape J

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For

                                                                The counit isomorphism of the equivalence widePullbackShapeOpEquiv : (WidePullbackShape J)ᵒᵖ ≌ WidePushoutShape J

                                                                Equations
                                                                • One or more equations did not get rendered due to their size.
                                                                Instances For

                                                                  The inverse of the unit isomorphism of the equivalence widePullbackShapeOpEquiv : (WidePullbackShape J)ᵒᵖ ≌ WidePushoutShape J

                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For

                                                                    The counit isomorphism of the equivalence widePushoutShapeOpEquiv : (WidePushoutShape J)ᵒᵖ ≌ WidePullbackShape J

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For

                                                                      The duality equivalence (WidePushoutShape J)ᵒᵖ ≌ WidePullbackShape J

                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For

                                                                        The duality equivalence (WidePullbackShape J)ᵒᵖ ≌ WidePushoutShape J

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For

                                                                          If a category has wide pushouts on a higher universe level it also has wide pushouts on a lower universe level.

                                                                          If a category has wide pullbacks on a higher universe level it also has wide pullbacks on a lower universe level.