Documentation

Mathlib.CategoryTheory.Monad.Basic

Monads #

We construct the categories of monads and comonads, and their forgetful functors to endofunctors.

(Note that these are the category theorist's monads, not the programmers monads. For the translation, see the file CategoryTheory.Monad.Types.)

For the fact that monads are "just" monoids in the category of endofunctors, see the file CategoryTheory.Monad.EquivMon.

structure CategoryTheory.Monad (C : Type u₁) [Category.{v₁, u₁} C] extends CategoryTheory.Functor C C :
Type (max u₁ v₁)

The data of a monad on C consists of an endofunctor T together with natural transformations η : 𝟭 C ⟶ T and μ : T ⋙ T ⟶ T satisfying three equations:

  • T μ_X ≫ μ_X = μ_(TX) ≫ μ_X (associativity)
  • η_(TX) ≫ μ_X = 1_X (left unit)
  • Tη_X ≫ μ_X = 1_X (right unit)
Instances For
    structure CategoryTheory.Comonad (C : Type u₁) [Category.{v₁, u₁} C] extends CategoryTheory.Functor C C :
    Type (max u₁ v₁)

    The data of a comonad on C consists of an endofunctor G together with natural transformations ε : G ⟶ 𝟭 C and δ : G ⟶ G ⋙ G satisfying three equations:

    • δ_X ≫ G δ_X = δ_X ≫ δ_(GX) (coassociativity)
    • δ_X ≫ ε_(GX) = 1_X (left counit)
    • δ_X ≫ G ε_X = 1_X (right counit)
    Instances For
      Equations
      Equations
      @[simp]
      theorem CategoryTheory.Monad.right_unit_assoc {C : Type u₁} [Category.{v₁, u₁} C] (self : Monad C) (X : C) {Z : C} (h : self.obj X Z) :
      CategoryStruct.comp (self.map (self.app X)) (CategoryStruct.comp (self.app X) h) = h
      @[simp]
      theorem CategoryTheory.Monad.left_unit_assoc {C : Type u₁} [Category.{v₁, u₁} C] (self : Monad C) (X : C) {Z : C} (h : self.obj X Z) :
      CategoryStruct.comp (self.app (self.obj X)) (CategoryStruct.comp (self.app X) h) = h
      @[simp]
      theorem CategoryTheory.Comonad.right_counit_assoc {C : Type u₁} [Category.{v₁, u₁} C] (self : Comonad C) (X : C) {Z : C} (h : self.obj X Z) :
      CategoryStruct.comp (self.app X) (CategoryStruct.comp (self.map (self.app X)) h) = h
      @[simp]
      theorem CategoryTheory.Comonad.left_counit_assoc {C : Type u₁} [Category.{v₁, u₁} C] (self : Comonad C) (X : C) {Z : C} (h : self.obj X Z) :
      CategoryStruct.comp (self.app X) (CategoryStruct.comp (self.app (self.obj X)) h) = h
      @[simp]
      theorem CategoryTheory.Comonad.coassoc_assoc {C : Type u₁} [Category.{v₁, u₁} C] (self : Comonad C) (X : C) {Z : C} (h : self.obj (self.obj (self.obj X)) Z) :
      CategoryStruct.comp (self.app X) (CategoryStruct.comp (self.map (self.app X)) h) = CategoryStruct.comp (self.app X) (CategoryStruct.comp (self.app (self.obj X)) h)
      structure CategoryTheory.MonadHom {C : Type u₁} [Category.{v₁, u₁} C] (T₁ T₂ : Monad C) extends CategoryTheory.NatTrans T₁.toFunctor T₂.toFunctor :
      Type (max u₁ v₁)

      A morphism of monads is a natural transformation compatible with η and μ.

      Instances For
        theorem CategoryTheory.MonadHom.ext {C : Type u₁} {inst✝ : Category.{v₁, u₁} C} {T₁ T₂ : Monad C} {x y : MonadHom T₁ T₂} (app : x.app = y.app) :
        x = y
        structure CategoryTheory.ComonadHom {C : Type u₁} [Category.{v₁, u₁} C] (M N : Comonad C) extends CategoryTheory.NatTrans M.toFunctor N.toFunctor :
        Type (max u₁ v₁)

        A morphism of comonads is a natural transformation compatible with ε and δ.

        Instances For
          theorem CategoryTheory.ComonadHom.ext {C : Type u₁} {inst✝ : Category.{v₁, u₁} C} {M N : Comonad C} {x y : ComonadHom M N} (app : x.app = y.app) :
          x = y
          @[simp]
          theorem CategoryTheory.MonadHom.app_η_assoc {C : Type u₁} [Category.{v₁, u₁} C] {T₁ T₂ : Monad C} (self : MonadHom T₁ T₂) (X : C) {Z : C} (h : T₂.obj X Z) :
          CategoryStruct.comp (T₁.app X) (CategoryStruct.comp (self.app X) h) = CategoryStruct.comp (T₂.app X) h
          @[simp]
          theorem CategoryTheory.MonadHom.app_μ_assoc {C : Type u₁} [Category.{v₁, u₁} C] {T₁ T₂ : Monad C} (self : MonadHom T₁ T₂) (X : C) {Z : C} (h : T₂.obj X Z) :
          CategoryStruct.comp (T₁.app X) (CategoryStruct.comp (self.app X) h) = CategoryStruct.comp (T₁.map (self.app X)) (CategoryStruct.comp (self.app (T₂.obj X)) (CategoryStruct.comp (T₂.app X) h))
          @[simp]
          theorem CategoryTheory.ComonadHom.app_δ_assoc {C : Type u₁} [Category.{v₁, u₁} C] {M N : Comonad C} (self : ComonadHom M N) (X : C) {Z : C} (h : N.obj (N.obj X) Z) :
          CategoryStruct.comp (self.app X) (CategoryStruct.comp (N.app X) h) = CategoryStruct.comp (M.app X) (CategoryStruct.comp (self.app (M.obj X)) (CategoryStruct.comp (N.map (self.app X)) h))
          @[simp]
          theorem CategoryTheory.ComonadHom.app_ε_assoc {C : Type u₁} [Category.{v₁, u₁} C] {M N : Comonad C} (self : ComonadHom M N) (X : C) {Z : C} (h : X Z) :
          CategoryStruct.comp (self.app X) (CategoryStruct.comp (N.app X) h) = CategoryStruct.comp (M.app X) h
          theorem CategoryTheory.MonadHom.ext' {C : Type u₁} [Category.{v₁, u₁} C] {T₁ T₂ : Monad C} (f g : T₁ T₂) (h : f.app = g.app) :
          f = g
          theorem CategoryTheory.ComonadHom.ext' {C : Type u₁} [Category.{v₁, u₁} C] {T₁ T₂ : Comonad C} (f g : T₁ T₂) (h : f.app = g.app) :
          f = g
          @[simp]
          @[simp]
          theorem CategoryTheory.MonadHom.comp_toNatTrans {C : Type u₁} [Category.{v₁, u₁} C] {T₁ T₂ T₃ : Monad C} (f : T₁ T₂) (g : T₂ T₃) :
          (CategoryStruct.comp f g).toNatTrans = CategoryStruct.comp f.toNatTrans g.toNatTrans
          @[simp]
          theorem CategoryTheory.comp_toNatTrans {C : Type u₁} [Category.{v₁, u₁} C] {T₁ T₂ T₃ : Comonad C} (f : T₁ T₂) (g : T₂ T₃) :
          (CategoryStruct.comp f g).toNatTrans = CategoryStruct.comp f.toNatTrans g.toNatTrans
          def CategoryTheory.MonadIso.mk {C : Type u₁} [Category.{v₁, u₁} C] {M N : Monad C} (f : M.toFunctor N.toFunctor) (f_η : ∀ (X : C), CategoryStruct.comp (M.app X) (f.hom.app X) = N.app X := by aesop_cat) (f_μ : ∀ (X : C), CategoryStruct.comp (M.app X) (f.hom.app X) = CategoryStruct.comp (CategoryStruct.comp (M.map (f.hom.app X)) (f.hom.app (N.obj X))) (N.app X) := by aesop_cat) :
          M N

          Construct a monad isomorphism from a natural isomorphism of functors where the forward direction is a monad morphism.

          Equations
          • CategoryTheory.MonadIso.mk f f_η f_μ = { hom := { toNatTrans := f.hom, app_η := f_η, app_μ := f_μ }, inv := { toNatTrans := f.inv, app_η := , app_μ := }, hom_inv_id := , inv_hom_id := }
          Instances For
            @[simp]
            theorem CategoryTheory.MonadIso.mk_inv_toNatTrans {C : Type u₁} [Category.{v₁, u₁} C] {M N : Monad C} (f : M.toFunctor N.toFunctor) (f_η : ∀ (X : C), CategoryStruct.comp (M.app X) (f.hom.app X) = N.app X := by aesop_cat) (f_μ : ∀ (X : C), CategoryStruct.comp (M.app X) (f.hom.app X) = CategoryStruct.comp (CategoryStruct.comp (M.map (f.hom.app X)) (f.hom.app (N.obj X))) (N.app X) := by aesop_cat) :
            (mk f f_η f_μ).inv.toNatTrans = f.inv
            @[simp]
            theorem CategoryTheory.MonadIso.mk_hom_toNatTrans {C : Type u₁} [Category.{v₁, u₁} C] {M N : Monad C} (f : M.toFunctor N.toFunctor) (f_η : ∀ (X : C), CategoryStruct.comp (M.app X) (f.hom.app X) = N.app X := by aesop_cat) (f_μ : ∀ (X : C), CategoryStruct.comp (M.app X) (f.hom.app X) = CategoryStruct.comp (CategoryStruct.comp (M.map (f.hom.app X)) (f.hom.app (N.obj X))) (N.app X) := by aesop_cat) :
            (mk f f_η f_μ).hom.toNatTrans = f.hom
            def CategoryTheory.ComonadIso.mk {C : Type u₁} [Category.{v₁, u₁} C] {M N : Comonad C} (f : M.toFunctor N.toFunctor) (f_ε : ∀ (X : C), CategoryStruct.comp (f.hom.app X) (N.app X) = M.app X := by aesop_cat) (f_δ : ∀ (X : C), CategoryStruct.comp (f.hom.app X) (N.app X) = CategoryStruct.comp (M.app X) (CategoryStruct.comp (f.hom.app (M.obj X)) (N.map (f.hom.app X))) := by aesop_cat) :
            M N

            Construct a comonad isomorphism from a natural isomorphism of functors where the forward direction is a comonad morphism.

            Equations
            • CategoryTheory.ComonadIso.mk f f_ε f_δ = { hom := { toNatTrans := f.hom, app_ε := f_ε, app_δ := f_δ }, inv := { toNatTrans := f.inv, app_ε := , app_δ := }, hom_inv_id := , inv_hom_id := }
            Instances For
              @[simp]
              theorem CategoryTheory.ComonadIso.mk_inv_toNatTrans {C : Type u₁} [Category.{v₁, u₁} C] {M N : Comonad C} (f : M.toFunctor N.toFunctor) (f_ε : ∀ (X : C), CategoryStruct.comp (f.hom.app X) (N.app X) = M.app X := by aesop_cat) (f_δ : ∀ (X : C), CategoryStruct.comp (f.hom.app X) (N.app X) = CategoryStruct.comp (M.app X) (CategoryStruct.comp (f.hom.app (M.obj X)) (N.map (f.hom.app X))) := by aesop_cat) :
              (mk f f_ε f_δ).inv.toNatTrans = f.inv
              @[simp]
              theorem CategoryTheory.ComonadIso.mk_hom_toNatTrans {C : Type u₁} [Category.{v₁, u₁} C] {M N : Comonad C} (f : M.toFunctor N.toFunctor) (f_ε : ∀ (X : C), CategoryStruct.comp (f.hom.app X) (N.app X) = M.app X := by aesop_cat) (f_δ : ∀ (X : C), CategoryStruct.comp (f.hom.app X) (N.app X) = CategoryStruct.comp (M.app X) (CategoryStruct.comp (f.hom.app (M.obj X)) (N.map (f.hom.app X))) := by aesop_cat) :
              (mk f f_ε f_δ).hom.toNatTrans = f.hom

              The forgetful functor from the category of monads to the category of endofunctors.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.monadToFunctor_obj (C : Type u₁) [Category.{v₁, u₁} C] (T : Monad C) :
                (monadToFunctor C).obj T = T.toFunctor
                @[simp]
                theorem CategoryTheory.monadToFunctor_map (C : Type u₁) [Category.{v₁, u₁} C] {X✝ Y✝ : Monad C} (f : X✝ Y✝) :
                (monadToFunctor C).map f = f.toNatTrans
                theorem CategoryTheory.monadToFunctor_mapIso_monad_iso_mk (C : Type u₁) [Category.{v₁, u₁} C] {M N : Monad C} (f : M.toFunctor N.toFunctor) (f_η : ∀ (X : C), CategoryStruct.comp (M.app X) (f.hom.app X) = N.app X) (f_μ : ∀ (X : C), CategoryStruct.comp (M.app X) (f.hom.app X) = CategoryStruct.comp (CategoryStruct.comp (M.map (f.hom.app X)) (f.hom.app (N.obj X))) (N.app X)) :
                (monadToFunctor C).mapIso (MonadIso.mk f f_η f_μ) = f

                The forgetful functor from the category of comonads to the category of endofunctors.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.comonadToFunctor_map (C : Type u₁) [Category.{v₁, u₁} C] {X✝ Y✝ : Comonad C} (f : X✝ Y✝) :
                  (comonadToFunctor C).map f = f.toNatTrans
                  @[simp]
                  theorem CategoryTheory.comonadToFunctor_obj (C : Type u₁) [Category.{v₁, u₁} C] (G : Comonad C) :
                  (comonadToFunctor C).obj G = G.toFunctor
                  theorem CategoryTheory.comonadToFunctor_mapIso_comonad_iso_mk (C : Type u₁) [Category.{v₁, u₁} C] {M N : Comonad C} (f : M.toFunctor N.toFunctor) (f_ε : ∀ (X : C), CategoryStruct.comp (f.hom.app X) (N.app X) = M.app X) (f_δ : ∀ (X : C), CategoryStruct.comp (f.hom.app X) (N.app X) = CategoryStruct.comp (M.app X) (CategoryStruct.comp (f.hom.app (M.obj X)) (N.map (f.hom.app X)))) :
                  (comonadToFunctor C).mapIso (ComonadIso.mk f f_ε f_δ) = f
                  def CategoryTheory.MonadIso.toNatIso {C : Type u₁} [Category.{v₁, u₁} C] {M N : Monad C} (h : M N) :
                  M.toFunctor N.toFunctor

                  An isomorphism of monads gives a natural isomorphism of the underlying functors.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.MonadIso.toNatIso_hom {C : Type u₁} [Category.{v₁, u₁} C] {M N : Monad C} (h : M N) :
                    (toNatIso h).hom = h.hom.toNatTrans
                    @[simp]
                    theorem CategoryTheory.MonadIso.toNatIso_inv {C : Type u₁} [Category.{v₁, u₁} C] {M N : Monad C} (h : M N) :
                    (toNatIso h).inv = h.inv.toNatTrans
                    def CategoryTheory.ComonadIso.toNatIso {C : Type u₁} [Category.{v₁, u₁} C] {M N : Comonad C} (h : M N) :
                    M.toFunctor N.toFunctor

                    An isomorphism of comonads gives a natural isomorphism of the underlying functors.

                    Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.ComonadIso.toNatIso_hom {C : Type u₁} [Category.{v₁, u₁} C] {M N : Comonad C} (h : M N) :
                      (toNatIso h).hom = h.hom.toNatTrans
                      @[simp]
                      theorem CategoryTheory.ComonadIso.toNatIso_inv {C : Type u₁} [Category.{v₁, u₁} C] {M N : Comonad C} (h : M N) :
                      (toNatIso h).inv = h.inv.toNatTrans

                      The identity monad.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Monad.id_obj (C : Type u₁) [Category.{v₁, u₁} C] (X : C) :
                        (id C).obj X = X
                        @[simp]
                        theorem CategoryTheory.Monad.id_map (C : Type u₁) [Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) :
                        (id C).map f = f
                        @[simp]
                        theorem CategoryTheory.Monad.id_η_app (C : Type u₁) [Category.{v₁, u₁} C] (X : C) :
                        (id C).app X = CategoryStruct.id X
                        @[simp]
                        theorem CategoryTheory.Monad.id_μ_app (C : Type u₁) [Category.{v₁, u₁} C] (X : C) :
                        (id C).app X = CategoryStruct.id X

                        The identity comonad.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Comonad.id_map (C : Type u₁) [Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) :
                          (id C).map f = f
                          @[simp]
                          theorem CategoryTheory.Comonad.id_ε_app (C : Type u₁) [Category.{v₁, u₁} C] (X : C) :
                          (id C).app X = CategoryStruct.id X
                          @[simp]
                          theorem CategoryTheory.Comonad.id_obj (C : Type u₁) [Category.{v₁, u₁} C] (X : C) :
                          (id C).obj X = X
                          @[simp]
                          theorem CategoryTheory.Comonad.id_δ_app (C : Type u₁) [Category.{v₁, u₁} C] (X : C) :
                          (id C).app X = CategoryStruct.id X
                          def CategoryTheory.Monad.transport {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C C} (T : Monad C) (i : T.toFunctor F) :

                          Transport a monad structure on a functor along an isomorphism of functors.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            def CategoryTheory.Comonad.transport {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C C} (T : Comonad C) (i : T.toFunctor F) :

                            Transport a comonad structure on a functor along an isomorphism of functors.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              theorem CategoryTheory.Monad.map_unit_app {C : Type u₁} [Category.{v₁, u₁} C] (T : Monad C) (X : C) [IsIso T] :
                              T.map (T.app X) = T.app (T.obj X)
                              theorem CategoryTheory.Monad.isSplitMono_iff_isIso_unit {C : Type u₁} [Category.{v₁, u₁} C] (T : Monad C) (X : C) [IsIso T] :
                              IsSplitMono (T.app X) IsIso (T.app X)
                              theorem CategoryTheory.Comonad.map_counit_app {C : Type u₁} [Category.{v₁, u₁} C] (T : Comonad C) (X : C) [IsIso T] :
                              T.map (T.app X) = T.app (T.obj X)
                              theorem CategoryTheory.Comonad.isSplitEpi_iff_isIso_counit {C : Type u₁} [Category.{v₁, u₁} C] (T : Comonad C) (X : C) [IsIso T] :
                              IsSplitEpi (T.app X) IsIso (T.app X)