The category of commutative comonoids in a braided monoidal category. #
We define the category of commutative comonoid objects in a braided monoidal category C
.
Main definitions #
CommComon C
- The bundled structure of commutative comonoid objects
Tags #
comonoid, commutative, braided
structure
CategoryTheory.CommComon
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
:
Type (max u₁ v₁)
A commutative comonoid object internal to a monoidal category.
- X : C
The underlying object in the ambient monoidal category
- comm : IsCommComonObj self.X
Instances For
def
CategoryTheory.CommComon.toComon
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
(A : CommComon C)
:
Comon C
A commutative comonoid object is a comonoid object.
Instances For
@[simp]
theorem
CategoryTheory.CommComon.toComon_X
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
(A : CommComon C)
:
instance
CategoryTheory.CommComon.instCommComonObjUnit
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
:
The trivial comonoid on the unit object is commutative.
def
CategoryTheory.CommComon.trivial
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
:
The trivial commutative comonoid object. We later show this is initial in CommComon C
.
Equations
- CategoryTheory.CommComon.trivial C = { X := CategoryTheory.MonoidalCategoryStruct.tensorUnit C, comon := ComonObj.instTensorUnit C, comm := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.CommComon.trivial_X
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
:
@[simp]
theorem
CategoryTheory.CommComon.trivial_comon_comul
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
:
@[simp]
theorem
CategoryTheory.CommComon.trivial_comon_counit
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
:
instance
CategoryTheory.CommComon.instInhabited
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
:
Equations
@[simp]
theorem
CategoryTheory.CommComon.id_hom
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
(A : CommComon C)
:
@[simp]
theorem
CategoryTheory.CommComon.comp_hom
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
{R S T : CommComon C}
(f : R ⟶ S)
(g : S ⟶ T)
:
theorem
CategoryTheory.CommComon.hom_ext
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
{A B : CommComon C}
(f g : A ⟶ B)
(h : f.hom = g.hom)
:
theorem
CategoryTheory.CommComon.hom_ext_iff
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
{A B : CommComon C}
{f g : A ⟶ B}
:
def
CategoryTheory.CommComon.forget₂Comon
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
:
The forgetful functor from commutative comonoid objects to comonoid objects.
Equations
Instances For
@[simp]
theorem
CategoryTheory.CommComon.forget₂Comon_map
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
{X✝ Y✝ : InducedCategory (Comon C) toComon}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.CommComon.forget₂Comon_obj_X
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
(A : CommComon C)
:
@[simp]
theorem
CategoryTheory.CommComon.forget₂Comon_obj_comon
(C : Type u₁)
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[BraidedCategory C]
(A : CommComon C)
: