The convolution monoid. #
When M : Comon_ C
and N : Mon_ C
, the morphisms M.X ⟶ N.X
form a monoid (in Type).
def
CategoryTheory.Conv
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
(M : Comon_ C)
(N : Mon_ C)
:
Type v₁
The morphisms in C
between the underlying objects of a pair of bimonoids in C
naturally has a
(set-theoretic) monoid structure.
Equations
- CategoryTheory.Conv M N = (M.X ⟶ N.X)
Instances For
instance
CategoryTheory.Conv.instOne
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M : Comon_ C}
{N : Mon_ C}
:
Equations
- CategoryTheory.Conv.instOne = { one := CategoryTheory.CategoryStruct.comp M.counit N.one }
theorem
CategoryTheory.Conv.one_eq
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M : Comon_ C}
{N : Mon_ C}
:
1 = CategoryStruct.comp M.counit N.one
instance
CategoryTheory.Conv.instMul
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M : Comon_ C}
{N : Mon_ C}
:
Equations
- One or more equations did not get rendered due to their size.
theorem
CategoryTheory.Conv.mul_eq
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M : Comon_ C}
{N : Mon_ C}
(f g : Conv M N)
:
f * g = CategoryStruct.comp M.comul
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight f M.X)
(CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft N.X g) N.mul))
instance
CategoryTheory.Conv.instMonoid
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M : Comon_ C}
{N : Mon_ C}
: