Documentation

Mathlib.CategoryTheory.Monoidal.Conv

The convolution monoid. #

When M : Comon_ C and N : Mon_ C, the morphisms M.X ⟶ N.X form a monoid (in Type).

def CategoryTheory.Conv {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] (M : Comon_ C) (N : Mon_ C) :
Type v₁

The morphisms in C between the underlying objects of a pair of bimonoids in C naturally has a (set-theoretic) monoid structure.

Equations
Instances For
    instance CategoryTheory.Conv.instMul {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {M : Comon_ C} {N : Mon_ C} :
    Mul (Conv M N)
    Equations
    • One or more equations did not get rendered due to their size.