The convolution monoid. #
When M : Comon_ C
and N : Mon_ C
, the morphisms M.X ⟶ N.X
form a monoid (in Type).
The morphisms in C
between the underlying objects of a pair of bimonoids in C
naturally has a
(set-theoretic) monoid structure.
Equations
- CategoryTheory.Conv M N = (M ⟶ N)
Instances For
instance
CategoryTheory.Conv.instOne
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M N : C}
[Comon_Class M]
[Mon_Class N]
:
theorem
CategoryTheory.Conv.one_eq
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M N : C}
[Comon_Class M]
[Mon_Class N]
:
instance
CategoryTheory.Conv.instMul
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M N : C}
[Comon_Class M]
[Mon_Class N]
:
Equations
- One or more equations did not get rendered due to their size.
theorem
CategoryTheory.Conv.mul_eq
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M N : C}
[Comon_Class M]
[Mon_Class N]
(f g : Conv M N)
:
instance
CategoryTheory.Conv.instMonoid
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
{M N : C}
[Comon_Class M]
[Mon_Class N]
:
Equations
- One or more equations did not get rendered due to their size.